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Preface 

In our published white paper “Beyond 5G White Paper ~Message to the 2030s~”, we researched what 
are required in various industries in the Beyond 5G/6G era, then we proposed “Further enhancement 
of specific 5G features” as key features for Beyond 5G/6G. To address these key features, Target Key 
Performance Indicators (Target KPI) for Beyond 5G/6G have been derived, and as quantitative Target 
KPI related with “Sensing”, sensing accuracy/resolution with order of centimeter (and more) has been 
introduced, which is much higher than that with order of meters in 5G. 
 

The Third Generation Partnership Project (3GPP) has initiated discussions on Integrated Sensing 
and Communication (ISAC) for the secondary use of radio waves. Defined use cases include the 
detection of human and animal intrusions in indoor/outdoor environments and understanding the status 
of automobiles and automatic guided vehicles. Sensing technologies utilizing radio waves have found 
widespread applications in detecting the distance and direction of objects, among other functionalities. 
With the current rapid advancements in Artificial Intelligence (AI) and Machine Learning (ML), their 
application scope continues to broaden, particularly in shape, motion, and gesture detections. 

 
Sensing technologies can be considered in both aspects of Beyond 5G/6G advancement through 

sensing as well as sensing with Beyond 5G/6G. First, let us consider the sensing for Beyond 5G/6G. 
Sensing of wireless environments in Beyond 5G/6G mobile communications is performed while 
transmitting data, and making this sensing more accurate is essential for improving performances of 
the wireless communications. The sensing data obtained here can be used not only for the wireless 
communications, but also for various applications as mentioned above. Next, let us consider Beyond 
5G/6G for the sensing. The use of high-frequency radios including millimeter-wave and terahertz 
bands is also expected to realize high-precision spatial sensing and localization (including positioning) 
by taking advantage of their properties. Such sensing is provided by the wireless communications 
(fixed and movable base stations) and optical communications. A basic principle of wireless sensing 
is to characterize the status and behavior of a target object as radio propagation characteristics in 
wireless channels; a Received Signal Strength Indicator (RSSI) and Channel State Information (CSI) 
are useful as feature information for the wireless sensing. CSI-based sensing is crucial for integrating 
communication and radar sensing. Many studies have shown its adaptability for various sensing tasks. 
However, the CSI-based sensing faces an open issue: how information in physical space (sensing 
environment) is reflected in CSI observations. To address this, further research is needed to better 
understand the relationship between the physical space and the CSI observations. 

 
In addition to such wireless sensing, network architecture to collect and process large amounts of 

data from cameras, Light Detection And Ranging (LIDAR), and other sensors, as well as sensing of 
the physical space as a digital twin are also expected. 
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However, there are still major challenges in the practical implementations for the design and 
evaluation of ISAC as a core technology in the Beyond 5G/6G system. First and foremost, a theoretical 
framework is necessary to analyze and evaluate the performance of current ISAC solutions to identify 
the benefits and any short comings. Current design of the ISAC system calls for the baseband and RF 
hardware to be functionally shared and as a trade-off, the impact of distortion parameters on sensing 
performance needs to be carefully considered. The challenge for the joint waveform design is the very 
different KPIs for communication and sensing where optimizing both might not be so straight forward.  

 
ISAC in the mobile communication network provides great opportunities and benefits for 

synchronized multi-static sensing where the technology challenges here would lie in the 
synchronization to achieve the optimum fusion sensing results. Concretely, current Global Navigation 
Satellite System (GNSS) fails to provide pico-second level synchronization accuracy to base stations, 
and new space-time synchronization should be provided with that level of accuracy, enabling the 
phase-locked synchronization in the millimeter wave between the base stations. 

 
To tackle these challenges and realize new use cases, there are a lot of research and development 

activities on the sensing technologies in Japan. As 6G Radio Technology Project of XGMF, this white 
paper summarizes both technical overview of ISAC and recent Japanese research and development 
(R&D) activities on the sensing technologies in the 6G radio technology field, including the content 
of Beyond 5G White Paper Supplementary Volume "Sensing Technologies" already published by 
XGMF. Specifically, this white paper introduces in detail cutting-edge R&D efforts on the sensing 
technologies in Japan as follows: 

 

- “CSI-Based Device-Free Sensing Using Deep Learning with 5G NR 28 GHz Band” describes 
an overview of device-free sensing technology, which detects target object without the need 
for mobile terminals, utilizing deep learning. It further introduces the effectiveness of this 
technology by experiments using a radio testbed equipped with the physical layer 
specifications of the 28 GHz-band 5G NR. 
 

- “Indoor Experimental Evaluation of Device-free Localization Schemes Using Channel State 
Information in Distributed Antenna Systems” describes a real-time CSI-based device-free 
localization scheme for distributed antenna systems, where CSI feedback frames are collected 
and used as a dataset for ML-based localization. Experimental results confirm that the 
localization scheme is effective for detecting a target in an indoor environment. 

 

- “CSI2Image: CSI-to-Image Conversion using a Generative Model” describes how to convert 
CSI observations into RGB images corresponding to physical space using generative 
adversarial network (GAN) architecture. The generated RGB images intuitively show the 
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relationship between the CSI observations and the physical space and potentially help us to 
extract many environmental parameters for multi-purpose sensing system. 

 

- “Use Cases for CSI Sensing with an Example of Pedestrian Movement Direction Identification” 
describes use cases for CSI sensing from the perspectives of commercial products and the 
author’s research, and specifically the effectiveness of pedestrian movement direction 
identification as one of the use cases for CSI sensing is verified by experimental evaluation 
with ML. 

 

- “Integrated Sensing and Communication (ISAC)” describes a concept of ISAC, typical use 
cases, and two case studies of how to use ISAC to improve localization accuracy and perform 
millimeter-level imaging at the THz band using future portable devices. The research 
challenges to implementing ISAC in practice are discussed. 
 

- “Space-Time Synchronization” describes that synchronization must not only be limited to time 
but also extend to space, entailing the sharing (synchronization) of spatial coordinate axes. The 
space-time synchronization is realized by three basic technologies, namely compact atomic 
clocks, wireless time synchronization, and cluster clock systems, which are explained briefly. 

 

- “Experimental Evaluation of WLAN-based Device-Free Localization Using CSI in Outdoor 
and Large-scale Indoor Environments” describes that the developed localization scheme 
enhances the localization accuracy in specific areas effectively by properly positioning the 
access point (AP) and the terminal. And also the research discusses the degree to which 
performance difference is observed in various scenarios with different AP and terminal 
positions. 

 

- “A Fundamental Study on the Relationship Between Pedestrian Traffic and Wi-Fi CSI with 
Existing Outdoor Access Points” describes the relationship between pedestrian traffic and Wi-
Fi CSI with existing outdoor APs. The results show a correlation between CSI variation and 
congestion conditions, demonstrating the feasibility of estimating pedestrian traffic using CSI 
variation from existing Wi-Fi APs. 

 

- “Multipath-RTI: Millimeter-Wave Radio Based Device-Free Localization” describes 
Multipath-RTI, a novel radio tomographic imaging (RTI) method utilizing millimeter-wave 
(mmWave) signals for device-free localization (DFL). The study introduces compressed 
sensing-based image reconstruction, automatic parameter tuning, and DBSCAN clustering for 
multi-target location estimation. Results from simulations and mmWave channel sounding 
measurements show sub-0.5 m accuracy in complex indoor environments. 
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- “Verification in an Anechoic Chamber toward the Realization of a Radio Wave Camera Using 
a Mobile Communication System” describes that the 5GNR downlink signal reflected from a 
target is received by a virtual array antenna, and the reference signal demodulation and 
direction estimation algorithms are applied in order to perform sensing without significantly 
disrupting the frame format of 3GPP-compliant signals. This result shows that it is possible to 
estimate the direction of a target by utilizing the reference signal contained in the 5GNR 
downlink signal. 

 
In conclusion, as we embark on the journey towards Beyond 5G/6G, the sensing technologies 

emerge as one of key elements in this technological evolution. Japan's endeavor to overcome the 
challenges to realize the sensing technologies, coupled with its commitment to research and 
development in this domain, positions it at the forefront of this next-generation mobile communication 
revolution. This white paper aims to provide a comprehensive overview of the potential, challenges, 
and future directions of the sensing technologies for Beyond 5G/6G, with a particular emphasis on 
their initiatives and advancements in Japan. 

 
This white paper was prepared with the generous support of many people who participated in 

Wireless Sensing Working Group of 6G Radio Technology Project, XGMF. The cooperation of 
telecommunications industry players as well as academia experts has also been substantial. Thanks to 
everyone’s participation and support, this white paper was able to cover a lot of useful information for 
future discussions on business creation between industry, academia, and government, and for 
investigating solutions to social issues, not only in the telecommunications industry, but also across 
all industries. We hope that this white paper will help Japan create a better future for society and 
promote significant global activities. 

 
Satoshi Suyama 

NTT DOCOMO, INC. 

Tomoki Murakami 

NTT Corporation 

  



 
 
 

 7 

I.  Technical Overview of Integrated Sensing and Communications (ISAC) 

Shuhei Saito 
Panasonic Holdings Corporation 

Hideya So 
Kogakuin University of Technology & Engineering 

Tomoki Murakami 
NTT Corporation 

Nobuaki Kuno, Takahiro Tomie, Koshiro Kitao, Satoshi Suyama 
NTT DOCOMO, INC. 

 
I-1.  Introduction 

In the fifth-generation-advanced (5G-A) and sixth-generation (6G) systems, new intelligent 
applications and services, such as autonomous driving and extended reality (XR), are expected to be 
realized. Such applications require both high-data-rate transmission and high-resolution sensing [1]. 
However, due to the shortage of spectrum resources, it is difficult to satisfy the spectrum requirements 
to support 5G-A and 6G. Accordingly, integrated sensing and communication (ISAC), which unifies 
the functions of wireless communications and radar sensing, has been gaining increasing attention [1], 
[2]. In the ISAC systems, the functions of communications and radar share the same frequency band 
and hardware equipment, thereby improving the spectrum efficiency, reducing the device's size, and 
saving energy consumption. 

To facilitate new mobile applications in 5G-A and 6G systems, the International Mobile 
Telecommunications (IMT)-2030 aims to support ISAC as usage scenarios, such as activity detection 
and movement tracking, environmental monitoring, and provision of sensing data on surroundings for 
artificial intelligence (AI), XR, and digital twin applications [3]. These applications must fulfill the 
following requirements: high-precision positioning, range/velocity/angle estimation, and imaging.  

On the other hand, ISAC faces several challenges in achieving high performances in communication 
and radar. From the communications perspective, ISAC applications require combating interference 
and channel fading. The radar function requires good autocorrelation, combating large Doppler 
frequency shifts, and massive signal bandwidth and dynamic range [1]. Moreover, ISAC systems must 
perform high accuracy within low complexity and limited computation resources. 
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Figure II-1.1 Usage scenarios of IMT-2030 [3]. 
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I-2.  Objective for standardization in 3GPP 

In response to the growing momentum of ISAC applications and the vision presented in IMT-2030, 
the standardization of ISAC specifications has also begun within the 3rd Generation Partnership 
Project (3GPP) [4]. Although 3GPP supposes the radio access technology (RAT)-based positioning, 
however, the current specifications do not offer the in-built capability to detect objects not connected 
to the network: The existing channel models in the technical report (TR) 38.901 [5] do not address 
target modelling, sensing, background environment modelling, and differentiation from targets. 
Therefore, it is important to establish a solid channel modelling framework to enable the evaluation of 
sensing techniques for such use cases mentioned above. 

Considering these backgrounds, 3GPP has identified a wide range of use cases for ISAC 
applications in TR 22.837 [6]. Moreover, 3GPP sets three objectives in the study item (SI) [4]: (1) 
channel modelling, (2) sensing modes, and (3) frequency.  

 
(1) Channel modelling: One of the goals is to define channel modelling aspects to support object 

detection and/or tracking. The technical specification (TS) 22.137 [7] aims at a common 
modelling framework capable of detecting and/or tracking the following example objects 
(sensing targets) and enabling them to be distinguished from unintended objects: 
 
a.  Uncrewed aerial vehicles (UAVs), 
b.  Humans indoors and outdoors,  
c.  Automotive vehicles (at least outdoors),  
d.  Automated guided vehicles (AGVs, e.g., in indoor factories),  and 
e. Objects creating hazards on roads/railways, with a minimum size dependent on frequency.   
 

(2) Sensing modes: This study defines six sensing modes, as shown in Figure II-2.1. 
 

(3) Frequency: Frequencies from 0.5 to 52.6 GHz are the primary focus, with the assumption that 
the modelling approach should scale to 100 GHz (If significant problems are identified with 
scaling above 52.6 GHz, the range above 52.6 GHz can be deprioritized). 

 
Accordingly, 3GPP aims to identify the details of the deployment scenarios corresponding to the 

above use cases. In particular, this study aims to define the channel modelling details for sensing based 
on the conventional specification TR 38.901 as a starting point and take into account relevant 
measurements, including: 

 
a. Modelling of sensing targets and background environment, including radar cross-section (RCS), 

mobility, and clutter/scattering patterns,  
b.  Spatial consistency.   
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Figure II-2.1 Sensing modes of ISAC. 
 

I-3.  Use case in 3GPP 

In TR 22.837 [6], a study item on ISAC was agreed to study channel modeling and deployment 
scenarios to detect and/or track the following example objects (sensing targets), as shown in Table II-
3.1. 
 

Table II-3.1 Use cases classifications based on sensing targets [6]. 

(1) UAVs 
 UAV flight trajectory tracing 
 Network-assisted sensing to avoid UAV 

collision 
 Sensing for UAV intrusion detection 
 UAVs, vehicles, and pedestrian detection near 

Smart Grid equipment 

(2) Humans indoors and outdoors 
 Intruder detection in smart home 
 Contactless sleep monitoring service 
 Health monitoring at home 
 Service continuity of unobtrusive health monitoring 
 Roaming for sensing service of sports monitoring 
 Immersive experience based on sensing 
 Use case public safety search and rescue or 

apprehend 

(3) Automotive vehicles (at least outdoors) 
 Sensing-assisted automotive maneuvering and 

navigation 
 Sensing for parking space determination 
 Vehicles sensing for ADAS 
 Sensing for automotive maneuvering and 

navigation service when not served by RAN 
 Blind spot detection 

(4) Automated guided vehicles (AGVs, e.g., in 
indoor factories) 
 AGV detection and tracking in factories 
 Autonomous mobile robot (AMR) collision 

avoidance in smart factories 

(5) Objects crating hazards on roads/ railways, 
within a minimum size dependent on frequency  
 Pedestrian/animal intrusion detection on a 

highway 
 Sensing for railway intrusion detection 
 Sensing at a crossroads with/without obstacle 
 Accurate sensing for automotive maneuvering 

and navigation service  

(6) Combination of (1)~(5). and other targets 
 Rainfall monitoring 
 Transparent sensing use case 
 Sensing for flooding in smart cities 
 Intruder detection in surroundings of smart home 
 Sensing for tourist spot traffic management 
 Protection of sensing information 
 Sensor groups 
 Seamless XR streaming 
 Coarse gesture recognition for application 

navigation and immersive interaction 
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Figure II-3.1(a) shows an example of detecting UAV intrusion over flight routes. Many low-altitude 
UAVs will be used in smart cities for complex and diverse tasks. However, the dense deployment of 
UAVs makes supervision difficult if only the traditional radar systems are used. Moreover, non-
cooperative UAVs intruding in some no-fly zones (e.g., airports and military bases) would lead to 
serious consequences, such as exposing private information using the camera and blocking other UAV 
traffic on the flying route. Therefore, the 5G system can detect UAV intrusion in restricted areas. 

Figure II-3.1(b) shows an example of health monitoring in an elderly house. The deployed 5G 
system installed in a hospital or elderly home includes multiple sensing devices, which can perform 
health monitoring, such as fall/activity detection of vital signs (e.g., heart rate or breathing rate), and 
wireless sensing of vital signs. Installing cameras has privacy concerns, whereas sensing devices have 
the advantage that there is no need to recharge/replace the batteries of body-worn sensors and 
remind/help residents to wear them after they take them off. 

Figure II-3.1(c) shows an example of parking space determination using the ISAC system. As shown 
in Figure II-3.1(c), sensing technology can improve the user experience in the parking garage by 
sharing information. Connectivity is an important component in automatic parking, such as automated 
valet parking (AVP) and automatic factory parking (AFP). 3GPP sensing technology can serve as a 
way to determine available parking spaces and the best route for a car to reach them. 

Figure II-3.1(d) shows a concept of collision avoidance in smart factories. Autonomous mobile 
robots (AMRs) can travel automatically without guides using the central unit that conducts scheduling, 
routing, and dispatching decisions. However, due to the AMR's sensing range limitation, the 
surrounding environment status may not be detected in time. 5G base stations deployed in a factory 
can provide communication capabilities for equipment in the factory and sense the surrounding 
environment. Therefore, sensing results can be utilized to improve the efficiency and driving safety of 
AMRs. 

Figure II-3.1(e) shows a concept of sensing at crossroads. Traffic accidents often happen at the 
crossroads, for example, owing to the sudden appearance of pedestrians from an invisible place. Thus, 
there is an urgent need to monitor the real-time road status. With the collaboration of trusted third 
parties, such as map service providers or management platforms of intelligent transport systems (ITS), 
driving warnings or assistant driving information can be provided timely to vehicles. The cameras and 
radars on roadside units (RSUs) have some blind points, whereas 5G-based sensing can provide 
sensing information to fill these gaps. 

Figure II-3.1(f) shows an example of flood detection in smart cities. Due to the rapid climate change 
in recent years, it can be challenging to predict where flooding occurs using cameras and other sensors. 
Instead of these devices, sensing employing radio waves can efficiently alternate flood detection. 
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(a) Detection of UAV intrusion (b) Health monitoring in elderly house 

  
(c) Parking space determination (d) Collision avoidance in smart factories 

 
 

(e) Sensing at crossroads (f) Detection of flood 
Figure II-3.1 Examples of the ISAC scenarios [6]. 
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I-4.  Progress of ISAC in 3GPP 

Figure II-4.1 shows an example of a roadmap for 3GPP ISAC standardization provided by a 3GPP 
delegate [8]. As shown in Figure II-4.1, the initial discussion of ISAC in 5G-A Release 19 (Rel-19) 
began in 2024. In the 3GPP service aspect (SA), the feasibility study on ISAC as a SI [6] and the 
service requirements for ISAC as a work item (WI) [4] have been completed. In the 3GPP radio access 
network (RAN), the simulation parameters of each ISAC sensing target have been agreed upon. 
Currently, discussions on the channel modelling for ISAC are ongoing. Until the middle of 2025, 
discussions will focus on the ISAC channel modelling for 5G-A [8], [9]. In particular, the 
specifications for the commercial and industrial use of UAVs are prioritized owing to the rapid growth 
in the business and industrial demands [8]-[10]. On the other hand, a lot of open issues remain as 
follows [11]: 
 
(1) ISAC deployment scenarios 

 Remaining issues on channel model calibration/evaluation parameters 
 Calibration of the ISAC channel model 
 

(2) ISAC channel modelling 
a. Physical object modelling 

 Collection of values for RCS model of UAV, human, vehicle, and AGV  
 Polarization matrix of target 
 Details on modelling objects with multiple scattering points 
 Correlation of RCS in adjacent incident and scattered angles  
 Forward RCS 

 
b. Channel model 

 Remaining details of the basic ISAC channel model 
 Background channel for monostatic sensing mode  
 Exact sections in the existing TR as a reference to generate 
 Target channel modelling for targets with multiple scattering points 
 Remaining details on environment object (EO) type-2  
 Details on power normalization combining target channel and background channel 
 Absolute time of arrival 
 Forward scattering and blockage 

 
  



 
 
 

 14 

c. Further details on spatial consistency 
 Which links should spatial consistency apply, Tx-target link, target-Rx link, and Tx-Rx link 

(i.e., background channel) of the same or different Tx/target/Rx 
 Site-specific or target-specific correlation parameters, including 3D spatial consistency 
 Consideration of EO 

 
 
 

 
Figure II-4.1 An example of a roadmap for 3GPP ISAC standardization [8]. 
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I-5.  Channel model 

The discussion of ISAC channel modeling started from the March 2024 RAN1 meeting by agreement 
on the following formula [12], [13]. 
 

𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐻𝐻𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
 
In addition to this formula, it is based on a common framework as shown in Figure II-5.1. It was first 
agreed that the ISAC channel model should consist of two channels: a target channel influenced by 
the sensing target and a background channel unaffected by the target. In addition to the target, for 
example, an object that is different from the target but knows its location is defined as environment 
object (EO), and the discussion started based on how to determine the details of each channel of the 
target, background, and EO. Furthermore, environmental objects are classified into EO type-1 if they 
are the size and shape equivalent to the sensing target (For example, people, UAV, AGV etc.), and EO 
type-2 if they are much larger than the target (For example, walls, buildings, grounds, etc.), and the 
effects of each type will be discussed in detail [13]. 
 

 
Figure II-5.1 The common framework for ISAC channel model [13][14]. 

 

The basis such as the generation of stochastic clusters by the target channel, and the deterministic 

parameters at the TRP and target were started by using the existing model of TR38.901 [15]. And it 

was agreed that the scattering point in the target is divided into single case and multiple case, and that 

the sensing is mainly by the value of RCS (radar reflection cross section) in the single scattering point 

[16], [17]. Figure II-5.2 shows an example of the discussion on the target RCS value in monostatic 

sensing [16]. In addition to discussing the RCS model for each target, the remaining issues such as 

target polarization, diffraction/blockade modeling, multi-scattering point target modeling, EO type-2 

modeling, and spatial consistency modeling are being discussed at the recent meeting [18], [19]. 
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Figure II-5.2 An example of the discussion on the target RCS value. 
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I-6.  Technology trend 

I-6.1.  Categories of Sensing methods 

The general categories of sensing methods are depicted in Figure II-6.1.1. Sensing can first be 
classified into two types: active sensors, which generate signals from the device itself, and passive 
sensors, which receive signals emitted by the environment. In ISAC, research has predominantly 
focused on active sensors; however, depending on the frequency used for sensing, the application of 
passive sensors may also be considered. Active sensors include sensing methods that utilize radar or 
communication signals. Radar-based sensing transmits specialized radar signals, such as pulse signals 
or Frequency Modulated Continuous Wave (FMCW) signals and detects parameters such as distance 
and Doppler shift based on the changes in these signals. This enables the detection of distance and 
objects and has led to the practical implementation of systems such as collision detection and weather 
radar. In contrast, communication-based sensing involves utilizing communication signals either in 
their original form or with partial extensions for sensing purposes. By integrating these methods into 
existing communication systems, sensing can be performed while minimizing capital investment and 
power consumption. The modulation schemes used include single carrier and multi-carrier, with 
ongoing research and development on specific modulation techniques for sensing applications. Among 
these, a new modulation scheme known as Orthogonal Time Frequency Space (OTFS) is being 
investigated, with promising future prospects. A key challenge in ISAC lies in how to effectively 
integrate these categories into communication systems, while constructing a comprehensive system 
that includes considerations of sensing accuracy. 
 

 

Figure II-6.1.1 Categories of sensing methods. 
  

Sensing

Active 
sensor

Radar

Pulse 
modulation

FMCW

Communication

Single carrier 
modulation

Multi carrier 
modulation
（OFDM/OTFS）

Passive 
sensor



 
 
 

 18 

I-6.2.  Publication Summary 

Table II-6.2.1 presents a summary of a survey on ISAC-related papers that will be registered in IEEE 
Xplore. As shown in the Table II-6.2.1, the classification is based on the use cases defined by 3GPP. 
Specifically, the results are categorized into Outdoor use cases, including Human, Animal, Vehicle, 
UAV, and Weather, as well as Indoor use cases. It should be noted that, although there are existing 
papers on Wi-Fi in the context of sensing technologies, these are excluded from this analysis. 
Furthermore, papers that include experimental studies are highlighted in gray and papers that include 
this white paper’s articles are highlighted in yellow. The results indicate that ISAC has been primarily 
studied for use cases other than Animal. 

Sensing using Wi-Fi signals is also being explored. This includes detecting the presence of humans 
and objects, detecting actions such as falls and walking, and detecting and tracking the location of 
humans and objects. Both scenarios, where the target to be detected has a Wi-Fi device and where it 
does not, are being considered, and many studies use CSI (Channel State Information) as feedback 
signals. This is an approach that utilizes the existing Wi-Fi system, making it a sensing technology 
that leverages the existing specifications. Furthermore, many studies focus on detecting humans and 
objects indoors. This is likely because Wi-Fi uses an unlicensed band, and using the same frequency 
as other systems could cause interference, so minimizing this interference is a key concern. 

On the other hand, sensing is also being considered for outdoor environments, in addition to indoors. 
Similarly to indoor sensing using Wi-Fi signals, detection of humans and objects is being explored 
outdoors. Sensing using millimeter waves in frequency bands is also being studied, offering higher 
resolution compared to Sub-6, allowing for more precise detection. For example, detection of sleep 
and respiration is also being performed. 

For outdoor sensing, in addition to humans and objects, detection of moving bodies such as vehicles 
and UAVs is being considered. To ensure safety, it is desirable to be able to track the positions of these 
moving bodies in real-time. If the moving body carries a device, position estimation can be achieved 
by measuring the received power. However, in some cases, the moving body may not be able to 
transmit control information containing its location. Therefore, passive sensing methods such as Time 
Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) are used to estimate the 
position. Additionally, methods to extract control information features from the moving body and 
detect its state from RF signal differences are also being studied. 

In addition to objects, weather sensing is also being explored. By analyzing the received power of 
signals during adverse weather conditions such as rain or snow, the state can be classified, and the 
weather can be determined. Studies are also being conducted to estimate the probability of rainfall 
through deep learning. Changes in humidity can also be detected. In such cases, selecting the 
appropriate frequency band is essential. 
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Table II-6.2.1 Publication summary of use case in ISAC. 
Use case Publications 

Outdoor 

Human 
[23][25][35][36][37][44][47][48][49][54][55][56][58][59][60][II-1][II-
4][II-7][II-8][II-10] 

Animal  
Vehicle [20][22][23][26][28][29][30][37][40][41][35][47][48][50][54][55][57] 
UAV [23][24][32][38][39][43][48][61][62][63][64][65] 

Weather [66][67][68][69][70][71][72][73][74][75] 

Indoor 
[21][27][31][33][34][42][46][50][51][52][53][76][II-2][II-3][II-9][II-
10] 

Other [II-5][II-6] 
 
I-6.3.  Publication Trend 

Figure II-6.3.1 illustrates trends in the number of publications on ISAC, JSAC/JCAS, and JRC/JCR. 
The database used to generate this figure consists of journals and conference papers published in IEEE 
Xplore from 2010 to 2024, with the number of publications containing the following keywords in their 
titles. 

 
 ISAC: ISAC, integrated sensing and communication 
 JSAC/JCAS: JSAC, JCAS, joint communication and sensing， joint sensing and 

communication 
 JRC/JCR: JRC, JCR, joint radar and communication, joint communication and radar 

 
As shown in the Figure II-6.3.1, from 2018 to 2020, the number of publications from JRC/JCR was 

above a certain level, but from 2021 onwards, the number of publications from ISAC has increased 
sharply. This is believed to be due to the definitions of terms provided by IMT-2030 and 3GPP. 
Furthermore, the number of ISAC papers is expected to continue to rise, indicating that it is a field of 
technology that is gaining attention. On the other hand, the number of publications from JSAC/JCAS 
and JRC/JCR is also on the rise, but since it is less than one-tenth of the number of ISAC papers, it is 
clear that conducting a keyword search for ISAC would be sufficient to investigate the technological 
trends. 

Next, a table showing the ranking of technical terms that are used alongside ISAC will be presented. 
The publication papers used for aggregation are the same as those extracted in Figure II-6.3.1, and the 
keywords registered for each paper in IEEE Xplore were compiled. By using these keywords, an 
overview of the current technological trends can be grasped. Words related to use cases are highlighted 
in green, while words related to technology are highlighted in yellow. In terms of use cases, 
autonomous driving, UAVs, and object detection, which are being considered for 6G, are ranked 
highly. In terms of technology, OFDM, MIMO, NOMA, interference full-duplex, and various 
optimization algorithms are ranked highly. 
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Figure II-6.3.1 Trends in the number of publications in IEEE Xplore. 
 

  

2018 2019 2020 2021 2022 2023 2024
ISAC 14 115 333 754
JSAC/JCAS 0 0 3 4 23 52 60
JRC/JCR 4 10 7 14 15 29 17
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Table II-6.3.1 Keyword ranking in ISAC publications. 
Keyword Count    

ISAC 800  NOMA 77 
sensors 361  deep learning 76 
wireless communication 294  signal processing 75 
radar 284  real-time systems 75 
simulation 274  costs 74 
array signal processing 266  bandwidth 68 
OFDM 247  beamforming 66 
6G 247  precoding 66 
optimization 227  signal processing algorithms 66 
signal to noise ratio 211  radar tracking 64 
receivers 189  antenna arrays 63 
interference 185  millimeter wave communication 63 
autonomous aerial vehicles 180  channel models 63 
estimation 167  quality of service 61 
channel estimation 156  training 61 
reconfigurable intelligent surfaces 155  transmitting antennas 59 
transmitters 142  imaging 58 
wireless sensor networks 137  parameter estimation 56 
location awareness 131  radio frequency 55 
time-frequency analysis 130  throughput 55 
conferences 124  performance evaluation 54 
symbols 116  heuristic algorithms 54 
resource management 113  approximation algorithms 54 
base stations 110  delays 52 
object detection 102  waveform design 51 
spectral efficiency 101  protocols 50 
hardware 101  system performance 47 
downlink 99  robot sensing systems 47 
radar antennas 96  MIMO 46 
interference cancellation 92  radar signal processing 46 
uplink 89  antenna measurements 44 
vehicular and wireless technologies 87  full-duplex system 44 
wireless networks 85  physical layer security 43 
radar detection 84  target tracking 43 
modulation 82  internet of things 43 
receiving antennas 79  uav 43 
measurement 77    
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II-1.  CSI-Based Device-Free Sensing Using Deep Learning with 5G NR 28 GHz Band 

Tomoki Murakami, Shinya Otsuki 
NTT Corporation 

Yutaka Musaka, Yoshifumi Morihiro, Huiling Jiang, Satoshi Suyama 
NTT DOCOMO, INC. 

Yasushi Maruta 
NEC corporation 

 

Abstract— Integrated Sensing and Communication (ISAC) is gaining attraction as it aims to 
bring added value to next-generation mobile communication networks. This paper offers an 
overview of the device-free sensing technology, which detects target object without the need for 
mobile terminals, utilizing deep learning. It further introduces the effectiveness of this 
technology based on our experiments conducted on a radio testbed equipped with the physical 
layer specifications of the 5G (NR) 28 GHz band. 

II-1.1.  Introduction 

The Japanese Cabinet Office has advocated “Society 5.0” to realize a human-centered society that 
balances economic advancement with the resolution of social problems through a system that highly 
integrates cyberspace and physical space [1]. This system leverages artificial intelligence (AI) and 
machine learning (ML) to analyze vast amounts of sensor data as big data in physical space, providing 
feedback to humans in various forms. Sensor data plays a pivotal role in Society 5.0 and requires 
efficient and cost-effective integration into cyberspace. In response to this need, the Third Generation 
Partnership Project (3GPP) has initiated discussions on Integrated Sensing and Communication 
(ISAC) for the secondary use of radio waves. Defined use cases include the detection of human and 
animal intrusions in indoor/outdoor environments and understanding the status of automobiles and 
Automatic Guided Vehicles (AGVs) [2]. 

Sensing technologies utilizing radio waves have found widespread applications in detecting the 
distance and direction of objects, among other functionalities. With the current rapid advancements in 
AI/ML, their application scope continues to broaden, particularly in shape, motion, and gesture 
detections [3][4]. This paper specifically focuses on device-free sensing as a method for detecting 
target objects without the need for mobile terminals. It introduces a Channel State Information (CSI)-
based device-free sensing method that achieves high-precision location detection of target objects 
through the application of a Deep Neural Network (DNN). Additionally, we demonstrate the 
performance of the proposed method through the results of an indoor experiment conducted on a radio 
testbed, equipped with the physical layer specifications of the 5G (NR) 28 GHz band [5]. 
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II-1.2.  CSI-based device-free sensing using DNN 

As outlined in the reference paper [6], the integration of DNN into radio communication networks is 
advancing, with sensing technologies using radio waves being fundamental to this progress. This paper 
introduces a device-free localization method, utilizing a DNN capable of detecting the location of a 
target object without relying on mobile terminals [7][8]. Figure III-1.1 depicts a system model wherein 
the detection of objects such as humans or cars and their states is accomplished through the analysis 
of radio waves between Beyond 5G (B5G) base stations (BSs). The training data for this system 
includes the target object locations and CSI between B5G-BSs, serving as the physical information. 
CSI, obtained through reference signals and similar means, is vital information for demodulation 
processing in radio communication networks. A prediction model for the DNN, developed through 
supervised learning based on recurrent neural network architecture, is constructed using the locations 
of target objects and CSI. Subsequently, the location of the target object is determined through the 
prediction model and the acquired CSI. This detected location information can be stored in cyberspace 
as sensor data, thereby contributing to the enhancement of radio communication network quality. 
 

 

Figure III-1.1 System model. 
 

II-1.3.  Experimental results 

We demonstrate the effectiveness of CSI-based device-free sensing utilizing a 28 GHz radio testbed 
[5]. As depicted in Figure III-1.2, the experimental setting comprises an indoor office with 
dimensions of 25 m × 15 m × 3.5 m and four columns. The radio testbed is configured to meet the 
physical specifications of 5G NR in the 28 GHz band, employing Multiple Input Multiple Output 
(MIMO) Orthogonal Frequency Division Multiplexing (OFDM) transmission with a 100 MHz 
bandwidth and a subcarrier spacing of 60 kHz. To enhance sensing accuracy, antennas for each BS 
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are strategically distributed, as illustrated in Figure III-1.2. The CSI for 6 × 2 MIMO-OFDM is 
acquired at 1-millisecond intervals through reference signals exchanged between BSs. The target 
object in this experiment is a human body phantom adjusted to match the dielectric constant of an 
actual human body in the 28 GHz band. Moreover, the phantom is mounted on an AGV for automated 
movement within the designated area, facilitating precise location information acquisition. 

Figure III-1.3 shows the cumulative distribution of the distance error between the detected location 
obtained from the proposed DNN-based method and the actual location. The predictive DNN model 
incorporates pre-acquired location information of the human body phantom and CSI from the BS. This 
figure highlights that the median location error for the human body phantom is approximately 0.6 m, 
with a root mean squared error (RMSE) of 1.1 m. While previous studies have demonstrated the 
effectiveness of location detection using Wi-Fi within sub-6 GHz bands, these results affirm the 
feasibility of location detection in the 28 GHz band. 

 

 
Figure III-1.2 Experimental environment. 
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Figure III-1.3 Experimental results. 

 

II-1.4.  Conclusion 

This paper outlines the CSI-based device-free sensing method for detecting a target object without the 
need for mobile terminals. Furthermore, we demonstrated the feasibility of achieving 1-meter-class 
localization through indoor experiments conducted on a radio testbed equipped with the 5G (NR) 28 
GHz band. In the future, we intend to validate its application in outdoor scenarios and explore the 
detection capabilities for multiple objects. 
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II-2.  Indoor Experimental Evaluation of Device-free Localization Schemes Using Channel State 
Information in Distributed Antenna Systems 

Osamu Muta, Kyushu University 
Tomoki Murakami, Shinya Otsuki, NTT Corporation 

 

Abstract—Wireless communication system-based localization techniques that use channel 
state information (CSI) have attracted much attention. Performance of the CSI-based 
localization schemes depends strongly on the selected feature information and antenna 
placement. Herein, we present a real-time CSI-based device-free localization scheme for 
distributed antenna systems, where CSI feedback frames are collected and used as a dataset for 
machine learning (ML)-based localization. Experimental results confirmed that the developed 
localization scheme is effective for detecting a target in an indoor environment. We also discuss 
how much performance improvement can be expected when antenna placement is given 
properly. 

II-2.1.  Introduction 

Wireless sensing is a key technology supporting the evolution of wireless communication for Beyond-
5G and 6G networks [1]. The basic principle of wireless sensing is to characterize the status and 
behavior of a target object as radio propagation characteristics in wireless channels; a received signal 
strength indicator (RSSI) and channel state information (CSI) are useful as feature information for 
wireless sensing. Recently, indoor device-free object detection approaches using radio signals of 
existing wireless communication infrastructure, have been investigated [2]-[7], where large amounts 
of CSI in the frequency and spatial domains are acquired simultaneously using multi-input multi-
output (MIMO) transmission with orthogonal frequency division multiplexing (OFDM). In [5]-[7], 
IEEE802.11ac-based wireless local area network (WLAN)-based device-free indoor object detection 
schemes were proposed, by which CSI feedback frames in WLANs were collected and analyzed to 
detect a target object and its behavior. However, the performance achieved by the CSI-based 
approaches depends strongly on the antenna placement and the surrounding propagation environment. 

This paper introduces our recent studies of wireless communication system-based indoor device-
free localization where feedback beamforming weights are used as effective feature data for machine 
learning (ML)-based object detection and localization. Experiment results demonstrate that our 
developed algorithm works well with small datasets in an indoor environment when distributed 
antenna placement is accomplished properly. 
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II-2.2.  CSI-based localization approaches 

Figure III-2.1 presents an illustration of the principles of device-free localization in wireless 
communication systems where the CSI between the base station (BS) and the terminal is affected by 
the target presence. Consequently, it is expected to detect the target by learning the relation between 
the states of the target and of the wireless channel without requiring that the target have wireless 
devices. However, a challenging hurdle is acquisition of a sufficient amount of CSI from environments. 
An effective method is to use CSI in existing WLAN systems [5]. 

 

Figure III-2.1 Principles of device-free localization using CSI. 
 

 

Figure III-2.2 Block diagram of the device-free object detection system. 
 
Figure III-2.2 portrays a block diagram of the object detection and localization system consisting of 

an BS, a terminal, and a CSI-capturing terminal, where M, N, and S respectively denote the numbers 
of transmit antennas, received antennas, and streams. On the terminal side, after channel estimation, a 
compressed version of a right-singular matrix obtained by singular value decomposition of the channel 
matrix is fed back to the BS side as beam-forming weights (BFWs). After the CSI-capturing terminal 
collects feedback frames sent by the terminal, it extracts the compressed CSI samples and uses them 
for ML-based localization [5]-[7]. To improve the localization performance, we developed an effective 
lightweight algorithm with a small dataset [6], where current and past BFWs are concatenated as single 
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data to build more accurate feature data. In addition, a frequency-domain sampling-based CSI 
compression [6] is adopted to minimize the dataset and the required complexity. After applying 
frequency-domain sampling and concatenating multiple BFWs as single feature data, they are used for 
both off-line training and for on-line detection. 

 

 

Figure III-2.3 Experiment scenario and setup. 
 

II-2.3.  Experiment scenario and results 

To clarify the effectiveness of the developed algorithm in a real environment, we conducted 
experimental evaluations of indoor localization with the developed algorithm. The experiment 
scenario and setup using IEEE802.11ac-based WLAN [8] are depicted in Figure III-2.3. Details of the 
experiments are presented in an earlier report of the relevant literature [7]. The detection area is divided 
into R regions labeled as 1, …, R=32. For this experiment, we consider a multi-class classification 
problem to detect the location (label) of a single target object. Random Forest model is used and built 
by off-line training with measured CSI. We evaluate the detection probability, which is defined as a 
conditional probability that the ML result is the same as the actual label number where a target person 
is located in one of the R=32 labeled areas. In this scenario, the detection probability is evaluated when 
a few (Ms=4) antennas are selected among numerous distributed antennas (M=12) to elucidate the 
relation between antenna placement and the detection probability. 
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Figure III-2.4(a) presents the detection probabilities for all possible antenna patterns where Ms=4 
antennas are selected among M=12. The total number of antenna combinations is 495. The horizontal 
axis index shows the antenna pattern numbers sorted from left to right in descending order of the 
average detection probability. The result indicates that about 20-point performance improvement can 
be confirmed for the antenna patterns with the maximum (best) and minimum (worst) detection 
probabilities. Heatmaps of the best 5 and the worst 5 area-wise detection probabilities are also shown 
respectively in Figure III-2.4(b) and Figure III-2.4(c). Results imply that a lower detection probability 
(better performance) tends to be obtained when the AP antenna positions are distributed. 

 

Figure III-2.4 Average detection probability for selected antenna positions. 
 

 

Figure III-2.5 Average detection probability in case of Ms = 2, 4, 6, 8, 10, and 12. 
 

Figure III-2.5 portrays the detection probability for a particular antenna placement in terms of the 
number of selected antennas. The table in the figure presents the selected antenna elements for each 
case, which corresponds to the antenna numbers in Figure III-2.4(a). This figure shows that 
distributing the antenna placement improves the localization performance, which consequently 
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maximizes the average detection probability. Results indicate that the overall detection probability 
improves as Ms increases because Ms becomes greater, and because more features are used for ML-
based localization. This finding implies that, if using the optimal antenna pattern for Ms=4 is possible, 
then average detection probability comparable to the case of Ms=12 can be achieved. 

 

II-2.4.  Conclusion 

As described herein, we introduced a device-free localization scheme using concatenated CSI in 
wireless communication systems with distributed antennas. Experiment results demonstrate that the 
developed scheme works well with small datasets in an indoor environment scenario. Moreover, we 
have demonstrated that the antenna placement strongly affects the achievable localization performance 
in an indoor environment. Developing object detection algorithms with a more powerful ML model is 
left as a subject for our future work. 
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II-3.  CSI2Image: CSI-to-Image Conversion using a Generative Model 

Sorachi Kato, Takuya Fujihashi, Takashi Watanabe, Shunsuke Saruwatari 
Osaka University 

Tomoki Murakami 
NTT Corporation 

Abstract—Wireless sensing studies based on channel state information (CSI) continue to be 
successful in various sensing tasks. However, we still have no clear answer to what extent we can 
extract the environmental parameters of physical space from CSI.  We proposed CSI2Image to 
address such a challenging issue. It converts CSI observations into RGB images corresponding 
to the physical space using generative adversarial network (GAN) architecture. The generated 
RGB images intuitively show the relationship between the CSI observations and the physical 
space, and potentially help us to extract many environmental parameters for multi-purpose 
sensing system. 

II-3.1.  Introduction 

Wireless sensing is becoming an increasingly attractive sensing technique in Beyond 5G and 6G 
networks due to its potential to solve issues associated with conventional sensor-based sensing and its 
ability to provide extensive, precise, and non-invasive sensing. CSI based sensing is crucial for 
integrating communication and radar sensing. Many studies have shown its adaptability for various 
sensing tasks, including activity recognition [1], [2], vital signal sensing [3], [4], and localization [5], 
[6]. However, CSI based sensing faces an open issue: how information in physical space is reflected 
in CSI observations. To address this, further research is needed to better understand the relationship 
between physical space and CSI observations. 

To tackle the challenging issue, this paper introduces CSI2Image [7]. It converts CSI observations 
in a more intuitive format, RGB images, allowing us to comprehensively understand how CSI reflects 
the physical space. CSI2Image generates images of the physical space from CSI observations using 
GAN architecture in an end-to-end manner.  Experiments demonstrated that the well-trained 
CSI2Image can generate the snapshots of the physical space from the CSI observations by extracting 
rich information from them. In addition, thanks to the advancement of sophisticated image recognition 
techniques, we can extract the various properties of the physical space using the generated images and 
image recognition techniques. 
 

II-3.2.  CSI2Image 

Figure III-3.1 shows the overview of the proposed CSI2Image. The basic architecture is based on 
DCGAN [8], thus the models are trained in an adversarial manner: the generator aims to generate 
realistic images, while the discriminator tries to distinguish between real and generated images. The 
generator takes both CSI observations and latent variables from a standard normal distribution as input. 
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In addition, it is assumed that we have a pair of time-synchronized CSI observations and images of 
the targeted physical space. 

We experimentally confirmed that simply introducing DCGAN does not lead to satisfactory results. 
We proposed a unique training loop called “Hybrid Learning”, which aims to ensure the 
generalizability of the networks for both image generation and real/fake determination, as well as 
obtaining the precise mapping from CSIs to the images. Figure III-3.2 shows the three different 
training steps included in the Hybrid Learning.  The first step is CSI2Image Learning, where the 
generator is supervised trained using CSI observation and their corresponding images, followed by 
Discriminator Learning, where the discriminator is trained with real images and generated images, but 
this time the generator generates images from random latent variables. Finally, after every K iteration, 
Generality Learning is triggered to update the parameters of networks and deceive the discriminator 
with the images generated by CSI observations. The generator acquires the mapping from the 
probability field of CSI to that of the image domain while avoiding overfitting to the training dataset 
through the combination of direct supervision and adversarial training. The training loop successfully 
displays the surrounding environment in the physical space containing in CSI observations in RGB 
images. To extract the properties of the physical space from the images, we can employ existing vision-
based object detection techniques like YOLO [9] according to the task specification. 

 

 
Figure III-3.1 The overview of CSI2Image. 
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(a) CSI2Image Learning 

 
(b) Discriminator Learning 

 
(c) Generality Learning 

Figure III-3.2 The proposed hybrid learning. 
 

II-3.3.  Evaluation 

To demonstrate the performance of CSI2Image to accurately generate RGB images of an indoor space 
from CSI observations and its performance in different sensing tasks, we conducted two experiments: 
object classification and human location classification. As shown in Figure III-3.3, CSI2Image 
successfully generated the RGB images and achieved over 90% accuracy for both tasks. Especially 
for human location classification task, we compared the efficiency of our proposed Hybrid Learning 
compared to supervised learning only with the generator (gonly) and original DCGAN training scheme 
(gan).  Experimental results show that Hybrid Learning outperforms the other two methods in terms 
of detection rate, similarity score between generated images and ground truth, bounding box 
confidence scores, and classification accuracy. This advantage is even more pronounced in more 
complex scenarios involving two people. 
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Figure III-3.3 Qualitative and quantitative evaluation for different sensing tasks. 
(top) Object classification, (bottom) Human location classification. 

 

II-3.4.  Conclusion 

This paper introduced the overview of CSI2Image, a GAN-based CSI-to-image conversion method. 
We demonstrated that the combination of direct supervision and adversarial training successfully 
achieves the conversion. The conversion not only helps us to represent physical information CSI has 
in a more explicable format but also helps us to construct multi-purpose sensing system with the 
vision-based detection techniques. 
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II-4.  Use Cases for CSI Sensing with an Example of Pedestrian Movement Direction 
Identification 

Masakatsu Ogawa 
Sophia University 

 

Abstract—The original purpose of communication is to convey information. Channel state 
information (CSI) is used for high-speed transmission and can also function as a sensor. Adding 
sensing ability to the communication function is expected to open up new services and 
applications. This paper describes use cases for CSI sensing from the perspectives of commercial 
products and my research, specifically pedestrian movement direction identification. 

II-4.1.  Introduction 

Wireless communication has traditionally been used to carry information through space as a medium. 
Most wireless communication systems currently use MIMO-OFDM transmission to achieve high-
speed transmission rates. This method uses channel state information (CSI) that indicates the radio 
propagation condition between the transmitter and receiver. CSI can also be used as a sensor since it 
indicates the spatial information between a transmitter and receiver. The sensing using this information 
corresponds to incorporating sensing into communication, which has been discussed in "Beyond 5G 
and 6G" and "IEEE802.11 wireless LAN". The technical terms for this are integrated sensing and 
communication (ISAC) and joint sensing and communication (JSAC). However, most current wireless 
communication chipsets do not provide an interface for users to obtain CSI.  

While research activity for CSI sensing is currently high, the number of commercial products for 
Wi-Fi sensing is rare. In my opinion, the reason is that the service requirements of use cases are strict, 
and the requirements are not entirely satisfied due to the uncertainty of radio propagation. Compared 
with RSSI, which also indicates the radio propagation condition, CSI has a higher reproducibility; thus, 
the use of CSI is suitable for sensing. The disadvantage of CSI is that it depends on the transmitter’s 
and receiver’s location. When the location changes, the CSI also differs from the change before its 
location.  

IEEE802.11bf discusses use cases for sensing [1] but does not confirm the feasibility. The paper 
describes use cases of CSI sensing applications from commercial products and my research, including 
advantages and disadvantages from the feasibility viewpoint. 

 

II-4.2.  Use cases in IEEE802.11bf and commercial products 

The difference between mobile communication and wireless LAN is the coverage area. The use cases 
differ depending on whether the sensing target exists in an outdoor public space or an indoor room. 
CSI indicates the radio propagation condition between the transmitter and receiver. Therefore, 
detecting a specific sensing target is difficult in an outdoor public space because of the wide area. 
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IEEE802.11bf discusses use cases for existing wireless LAN standards, which operate at 2.4GHz, 
5GHz, 6GHz, and 60GHz [1]. The range resolution relates to the signal bandwidth, i.e., the frequency 
band. The specific use case for the high-frequency band, i.e., 60GHz, is high-resolution sensing, e.g., 
gesture recognition (hand or figure movement), and for the low-frequency band, is low-resolution 
sensing, e.g., human presence and motion detection [2]. Among them, CSI sensing mainly corresponds 
to low-resolution sensing. The use cases discussed in IEEE802.11bf are as follows: Room sensing, 
Gesture recognition for full-body movement, Health care, and Car sensing. 

I found some information about the feasibility of the above use cases. Hex Home by Origin Wireless 
is a commercial product for room sensing and healthcare [3]. Specifically, room sensing is used for 
home security by detecting intruders and is also for home monitoring of older people and/or children. 
The CSI variation is used to detect human movement. Healthcare is used for measuring breathing rate 
using the CSI periodicity. Wiz product named SpaceSense by Signify is another commercial product 
that corresponds to room sensing, i.e., a smart light [4]. This light control uses the CSI variation 
relating to the detection of human movement. Although I could not confirm whether car sensing by 
Murata Manufacturing has been commercialized, CSI sensing is used to detect the presence of a child 
in the car by measuring movement detection and breathing rate [5]. Note that the accuracy of breathing 
rate measurement depends on the location of the transmitter and receiver. 

Figure III-4.1 shows the relationship between use cases and the purpose of the product. CSI variation 
is used for presence detection, and there are many examples of its application. Combining presence 
detection and breathing rate measurement for intruder detection is possible, but I could not find such 
a product. 

 

 
Figure III-4.1 Relationship between use cases and the purpose of products. 

 

II-4.3.  Use cases in my research 

My research aims to investigate the potential of CSI sensing without considering the user’s needs. 
Basically, the commercial products mentioned above do not require machine learning. Based on my 
experience with Wi-Fi, use cases for CSI sensing can be categorized into those that require machine 
learning and those that do not. 
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CSI sensing can be used for various applications without machine learning. Here are some examples 
of CSI sensing use cases that do not require machine learning: breathing rate measurement [6], people 
counting using breathing rate measurement [6], and propeller rotation speed measurement [7]. 

CSI sensing can also be used with machine learning for more advanced applications such as human 
activity recognition [8], material identification [9], pedestrian movement direction identification [10], 
human location estimation [11], water height estimation in a bottle [12], pose estimation [13], and 
laundry dryness estimation [14]. 
 

II-4.4.  Pedestrian movement direction identification 

Pedestrian movement direction identification is one of the use cases for CSI sensing. Nowadays, 
access points are often installed on the ceilings of offices and are connected to Ethernet or wireless 
mesh networks. In the future, if it becomes possible to measure CSI from communication between 
access points, it will be possible to estimate human flow. 

Suppose consider a crossroads in a hallway. As shown in Figure III-4.2, one transmitter and three 
receivers are installed. Due to cost constraints, it is necessary to reduce the number of receivers as 
much as possible. There are 13 types of movement directions: four entrances to the crossroads and 
three exits from the crossroads per entrance. In addition to the twelve conditions, there is the condition 
that no humans are at the crossroads. Three people walked ten times for CSI measurements for each 
direction, resulting in 30 samples per direction. Including the case where no humans are at the 
crossroads, the total number of samples is 390. If the CSI differs in every direction, it is necessary to 
pay attention to the time series of CSI. Therefore, LSTM is used as a machine learning algorithm to 
classify the 13 types of movement directions, and accuracy is evaluated by leave-one-out cross-
validation. 

 

 

Figure III-4.2 Experimental environment. 
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Figure III-4.3 Experimental result. 

 

 
Figure III-4.4 CSI at each receiver. 

 
The accuracy of the difference in the number of receivers is shown in Figure III-4.3. The accuracy 

improves with the number of receivers and is over 90% when the number of receivers is two or three. 
When the receiver is only RxE, the accuracy is less than 90%. Figure III-4.4 shows the time-series 
CSI in three receives. When a human walks from N to S, the CSI fluctuation at only RxE is short. 
Because of the short time of the CSI fluctuation, it isn't easy to distinguish when a human walks from 
N to S and when a human walks from S to N. The confusion matrix using only RxE is shown in Figure 
III-4.5, where the label indicates direction and "nothing" indicates no human exists. I found that the 
estimation error occurs between StoN and NtoS. Therefore, the receiver at a non-line-of-sight location 
from the transmitter needs to be set to achieve higher accuracy. 
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Figure III-4.5 Confusion matrix at RxE. 
 

 

II-4.5.  Conclusion 

The paper describes use cases for CSI sensing from commercial products and my research, specifically 
pedestrian movement direction identification. Although only some commercial products utilize CSI 
sensing, various services are expected to be created in the future by utilizing this technology. 
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II-5.  Integrated Sensing and Communication (ISAC) 
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Abstract—6G will serve as a distributed neural network for the future Intelligence of 
Everything. Network Sensing and Native AI will become two new usage scenarios in the era of 
connected intelligence. 6G will integrate sensing with communication in a single system. Radio 
waves can be exploited to "see" the physical world and make a digital twin in the cyber world. 
This paper introduces the concept of integrated sensing and communication (ISAC) and typical 
use cases, and provides two case studies of how to use 6G ISAC to improve localization accuracy 
and perform millimeter level imaging using future portable devices. The research challenges to 
implementing ISAC in practice are discussed. 

II-5.1.  Introduction 

In 6G mobile communication systems, the use of higher frequency bands (from mmWave up to THz), 
wider bandwidth, and massive antenna arrays will enable high accuracy and high-resolution sensing, 
which can help implement the integration of wireless signal sensing and communication (ISAC)[1] in 
a single system for their mutual benefit. On the one hand, the entire communications network can 
serve as a sensor. The radio signals transmitted and received by network elements and the radio wave 
transmissions, reflections, and scattering can be used to sense and better understand the physical world. 
The capabilities to obtain range, velocity, and angle information from the radio signals can provide a 
broad range of new services, such as high accuracy localization, gesture capturing and activity 
recognition, passive object detection and tracking, as well as imaging and environment reconstruction 
[2]. This is called "network as a sensor". On the other hand, the capabilities of high-accuracy 
localization, imaging, and environment reconstruction obtained from sensing can improve 
communication performance. 
 

II-5.2.  ISAC use case overview 

Wireless sensing has long been a separate technology developed in parallel with the mobile 
communication systems. Positioning is the only sensing service that mobile communication systems 
(until 5G) could offer. General sensing rather than positioning will become a new function integrated 
into the 6G mobile communication system. This capability will open up brand new services for 6G. 
These services are currently provided by various dedicated sensing equipment, such as radar, light 
detection and ranging (LIDAR), and professional CT and MRI equipment. The ISAC capability will 
thus enable many new services that mobile communication system operators can offer. These include 
very high accuracy positioning, localization and tracking, imaging for biomedical and security 
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applications, simultaneous localization and mapping to automatically construct maps of complex 
indoor or outdoor environments, pollution or natural disaster monitoring, gesture and activity 
recognition, flaw and material detection and many other services. These services will in turn enable 
application scenarios in all kinds of business for future consumers and vertical industries. The potential 
new services that could be supported by future ISAC systems are listed in Table 1. In the table, the 
use cases are categorized into four functional categories across different applications/industries 
(vertical industry, consumer and public services):  
 High-accuracy localization and tracking 
 Simultaneous imaging, mapping and localization 
 Augmented human sensing   
 Gesture and activity recognition 

 

II-5.3.  ISAC for centimeter-level positioning 

The integration of sensing and communication functions can happen at three different levels, from 
loosely coupled to fully integrated. At the lowest integration level, sensing and communication 
capabilities can co-exist on hardware by sharing the spectrum, which is more efficient than dedicated 
spectrum usage. Sensing can benefit from the economies of scale in the mobile communication 
network, where shared hardware will be cost effective and eases deployment and 6G requires solutions 
for sub-centimeter level positioning techniques for various future applications and use cases. This level 
of accuracy for positioning requires much more detailed knowledge of the radio signal propagation 
environment where sensing comes into play. By learning the environment RF map and the way the 
transmitted waveform is manipulated by it, the UE position can be obtained as a function of the 
measurement parameters. This way, the multipath nature of the propagation channel will be helpful. 
Moving to higher frequencies can further facilitate such sensing-assisted positioning because the 
channel becomes sparser, and hence, characterizing the mapping between UE position and its 
propagation channel takes less effort. In a reflection-dominant environment (which is the case in 
higher frequencies), one such mapping can be obtained by decomposing the multipath channel as 
multiple LOS channels coming from multiple anchors. Those anchors are obtained by mirroring the 
transmission point (TP) over the surface of the corresponding reflector for each path. Those virtual 
anchors are referred to as virtual TPs or vTPs. 
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Figure III-5.1 Mapping the objects/reflectors of the environment to virtual anchors, i.e., mapping 

multipath components to vTPs. 
 

II-5.4.  ISAC for mm-level imaging at the THz band 

THz lies between the mm-Wave and infrared frequencies, and thus has millimeter-level and even sub-
mm level wavelength, making the ISAC system at the THz band (ISAC-THz) particularly suitable for 
high resolution sensing applications such as millimeter-level resolution 3D imaging. Like the other 
lower frequency radio waves, THz can penetrate some obstacles, achieving high-precision sensing in 
all weather and lighting conditions. Recent developments in semiconductor technology have bridged 
the "THz band gap" and made the hardware feasible at the terminal side. ISAC-THz based portable 
devices will thus open the door for numerous new sensing applications such as augmented human 
sensing with very high resolution.  
 

II-5.5.  Compressed sensing-based tomography imaging 

A major challenge for the virtual aperture imaging technique is the irregular scanning trajectory caused 
by the user moving the ISAC imaging module to perform THz scanning on an object. Assume a zigzag 
scanning routine is used to image an object, as shown in A major challenge for the virtual aperture 
imaging technique is the irregular scanning trajectory caused by the user moving the ISAC imaging 
module to perform THz scanning on an object. Assume a zigzag scanning routine is used to image an 
object, as shown in Figure III-5.2. The echo samplings in the horizontal direction are continuous, i.e., 
the spatial spacing between sampling points is comparable to the wavelength of the echo signal. 
However, continuous sampling cannot be maintained in the vertical direction. As a result, the echo 
samplings in the vertical direction are sparse, which will cause high and non-uniform sidelobe effects, 
giving rise to false artifacts, which may lead to imaging failure. To solve this challenge, we consider 
decomposing the scanning trajectory on a two-dimensional (2D) plane into several sets of linear 
scanning tracks along the horizontal direction, where the sparseness of the sampling signals in the 
vertical domain is then equivalent to the sparseness between horizontal tracks, as illustrated in Figure 
III-5.2. In this case, the reflected/echo information from the object can be retrieved from these 
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vertically sparse samplings via compressed sensing techniques [3]. As depicted in Figure III-5.3(a), 
the robotic arm scans at a speed of 1 m/s with the scanning area set as 10 cm by 12 cm in the prototype.  
 

 
Figure III-5.2 Illustration of the sparse scanning approach and the tomographic imaging techniques. 

 

 

Figure III-5.3 Setup of the ISAC-THz prototype. 
 
The longitudinal spacings of the scan trajectories are controlled to simulate the sparsity in the 

trajectories of the user's hand-held scanning behavior. The target object to be imaged, as shown in 
Figure III-5.3 (b), is put in a box with a cap on top of it. As we can see from Figure III-5.3(b), the 
smallest distance in the hallowed pattern is 3.5 mm, so the highest resolution of the imaging results 
can be 3.5 mm. The proof-of-concept THz imaging performances with different sparsity 
configurations in the scanning patterns are presented and compared in Figure III-5.4. In each of the 
figures, the 3D imaging results are shown on the left and the cross-range profile perceived from top 
down is shown on the right. The non-sparse full aperture scanning in Figure III-5.4(a) is an ideal case, 
in which the vertical sampling is half wavelength adjacent. This achieves the best PSLR and ISLR 
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performance, which is set as an upper bound performance reference. Then, in order to simulate the 
sparsity in real free hand scanning, we assume different sparsity configurations in tests, from 50% 
(medium sparsity) to 25% (most sparsity), where X% sparsity means that there are X % of the full 
samplings remaining in the vertical direction. With the collection of fewer samplings, stronger 
sidelobe interference occurs at the resulted aperture, resulting in worse imaging performance. From 
the comparison of Figure III-5.4(c) and Figure III-5.4 Figure III-5.4(d), we see that when the sparsity 
is too high, the traditional tomography algorithm is not enough to recover the images. In this case, the 
compressed-sensing based tomography approach showed its superior performance. 

 

 
Figure III-5.4 Imaging results at different sparsity configurations. 

 

II-5.6.  Conclusion 

With the concept of ISAC being commonly accepted as one of the key technology trends for 6G, this 
paper takes a step forward and elaborates two case studies on how 6G ISAC technologies can be 
applied to improve localization and to perform high resolution imaging. In particular, the proposed 
SAPE scheme utilizes the joint benefit of device free and device-based sensing and greatly improves 
the positioning accuracy compared with the current NR scheme. The prototype of the THz camera 
justifies the feasibility of mm-level imaging resolution on portable devices for both 2D and 3D objects 
placed in a box. Joint efforts from both academia and industry are needed to address further challenges 
in the system level evaluation of ISAC, new channel modeling methodology, new waveform design, 
low complexity algorithm design, and low-cost hardware design. 
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II-6.  Space-Time Synchronization 
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Abstract—For mobile communication technology to transform from a means of man-to-man 
communication to an infrastructure for various vertical sectors in society, the method of the time 
synchronization should shift from the traditional leader-follower structure to autonomous 
distributed synchronization. Furthermore, synchronization must not only be limited to time but 
also extend to space, entailing the sharing (synchronization) of spatial coordinate axes. This 
would be realized by three basic technologies, namely compact atomic clocks, wireless time 
synchronization, and cluster clock systems. The combination will eventually acquire sensing 
capabilities like distance measurement through radio wave propagation time. 

II-6.1.  Introduction 

Networks have so far operated under the assumption that participant clocks are not synchronized, 
establishing a kind of pseudo-synchronization on a one-to-one basis when necessary, where signal 
transmission time was not taken into account. On the other hand, GNSS has vividly demonstrated its 
high value by having participants (in this case, many GNSS satellites) with perfectly synchronized 
clocks, where signal transmission time was taken into account. A prime example is the ability of 
positioning through radio wave propagation time. Currently, mobile network base stations obtain time 
from GNSS, but synchronization to GNSS time requires a certain duration, during which the local 
clock frequency drifts, making it not easy to maintain a consistently synchronized clock in ns level. 
Additionally, synchronization through GNSS has limitations, such as being unusable indoors and 
vulnerability due to weak satellite signal strength. Furthermore, we should note that the heavy societal 
dependence on GNSS has led to considerations for timekeeping methods independent of GNSS, as 
indicated by executive orders from the United States [1]. 

Beyond 5G networks are expected to transcend mere human communication and become a social 
infrastructure for various economic activities. Space-time synchronization proposed here will 
demonstrate solutions to the concern about the resiliency while enjoying the benefits of a synchronized 
network. This is based on: 
(1) Enhancing the basic strength of synchronized systems by implementing inexpensive, miniaturized 
atomic clocks in base stations, autonomous vehicles, and even mobile devices in future. 
(2) Measuring time differences between clocks at nodes and achieving high-precision synchronization 
when necessary. Wireless time difference measurement or time synchronization also enables distance 
measurement based on the signal propagation time. 
(3) Creating a virtual clock through the weighted average of local clocks at individual nodes and 
sharing it across the network, thus generating a standard network clock with high resiliency. 
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II-6.2.  Three technologies comprising space-time synchronization 

Toward 6G, ITU-R WP5D composed a document of technology aspects, “Future technology trend for 
IMT-2030” [2]. This document clearly mentions that the three technologies are key for real-time 
communications/services. Here, we briefly describe what they are, as follows.  

 

II-6.3.  Chip-level integrated frequency standard (CLIFS) 

Atomic clocks, with its ticking rate determined by atomic transition frequencies and known for their 
extremely high frequency stability, became commercially available with the size of a matchbox in 
2010. However, mass production was not feasible, limiting their widespread use in consumer products. 
Recent advances in MEMS technology are about making it possible to mass-produce atomic cells and 
GHz band oscillators with low phase noise, leading to reduced costs. For instance, Figure III-6.1 shows 
mass-produced atomic cells using silicon process technology. As a source oscillator, 3.4 GHz 
oscillator using a solid-state thin-film element (FBAR) recently achieves low phase noise below -124 
dBc/Hz at the power consumption of 3mW. The size projected currently ongoing  is not yet suitable 
for handsets but is sufficient for base stations, autonomous vehicles, and drones. 

 

 

Figure III-6.1 Attempt for mass production of alkali-atom cells using MEMS technology. 
 

II-6.4.  Wireless Two-way Interferometry (Wi-Wi) 

To achieve high precision in comparing local clock times, signals are sent bidirectionally between 
nodes, enabling the measurement of both clock difference and signal propagation time. Wireless Two-
way Interferometry (Wi-Wi) achieves both syntonization (=identical frequency) and synchronization 
through the carrier wave of wireless communication. Wi-Wi first compares the carrier phase difference 
between the local clocks of leader and follower modules. Phase locking (precise syntonization) is 
accomplished as the follower module stabilizes its local clock to the leader clock. After clock drift is 
corrected by phase stabilization, the clock is compared through packet transmission and arrival timings. 
The follower module can then adjust its clock to the leader clock for synchronization. 
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We have developed a module incorporating a commercial off-the-shelf 920MHz RF chip, fully 
aligned with the IEEE 802.15.4g standard. It can stabilize the phase with a jitter of ~20 ps and then 
synchronize the clock to 30 ns. Figure III-6.2 shows the latest version of our Wi-Wi module, where 
the board size is 67.25mm x 31.75mm.  

Two-way measurement provides the significant byproduct of ranging, stemming from the 
propagation time measurement. Phase measurement allows us to measure distance variation at the sub-
cm level. While there is room for improvement in synchronization error, combining it with wide-
bandwidth signals can feasibly suppress it to the sub-ns level. 

 

 
Figure III-6.2 Wi-Wi module. 

 

II-6.5.  Cluster clock system 

With local clocks having high frequency stability, it may not be the best way to synchronize with an 
external master clock with a wide servo bandwidth. Rather, making slight frequency adjustments to 
the atomic clock within a low bandwidth might yield a more stable and reliable clock. Also, creating 
a virtual clock by locally sharing a weighted mean of the many clocks within the network enhances 
frequency stability and reduces the risk that specific clock failures affect whole network. Figure III-
6.3 shows a POC setup where ten nodes, each equipped with compact atomic clocks, are installed 
within the same rack and interconnected by optical fiber, realizing a wired cluster clock architecture. 
A virtual clock is generated through numerical processing from the time difference between the 
neighbor clocks. Adding frequency and phase offset to the signal of local free-running atomic clocks, 
each node can generate the ensemble clock as real signals. 
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Figure III-6.3 Demonstration of a cluster clock. 
Left: Ten nodes equipped with compact atomic clock are connected in a star topology. 

Right: Records of clock reading in one day. Cluster clock (red curve) shows an enhanced stability, 
whereas ten thin curves are those of each clock. 

 

II-6.6.  Space-Time Synchronization 

Traditionally, synchronization often has involved a leader-follower model where the leader's signal is 
followed by the followers, including delay as well as noise within the propagation delay, signifying 
that the time coordinate axis between the leader and follower are not shared. This indicates that 
synchronization is about sharing the time coordinate axis. Extending this concept to space constitutes 
the idea of space-time synchronization. Wi-Wi, by measuring propagation delays, enables distance 
measurements. Furthermore, combining multiple units allows for positioning. This implies that the 
spatial coordinate axes are shared among network participants, leading to applications like multiple 
machines coordinating work based on the information of mutual positioning, or multiple vehicles and 
pedestrians on roads moving coherently to avoid collisions. 
 

II-6.7.  Conclusion 

The concepts of space-time synchronization and three key technology that realizes space-time 
synchronization are briefly described. This idea will make the mobile communication system more 
robust, resilient, and could make energy efficient. 
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Abstract— Wireless local area network (WLAN)-based device-free localization techniques 
using channel state information (CSI) have been investigated, where CSI feedback frames are 
collected and used as a dataset for machine learning (ML)-based localization. However, CSI-
based localization scheme performance depends strongly on radio propagation environments 
such as the existence of reflective obstacles and WLAN antenna positions. This paper introduces 
our recent studies with experimentation on WLAN-based device-free localization in outdoor and 
large-scale indoor environment scenarios. Experiment results confirmed that the developed 
localization scheme enhances the localization accuracy in specific areas effectively by properly 
positioning the access point (AP) and the terminal. We also discuss the degree to which 
performance difference is observed in various scenarios with different AP and terminal positions. 

II-7.2.  Introduction 

Integrated sensing and communication (ISAC) technologies have been investigated actively as a 
potential key technology to support 6G networks [1]. Recently, device-free indoor object detection 
approaches using radio signals of existing communication infrastructure, such as wireless local area 
networks (WLANs), have attracted much attention [2]–[9], where large amounts of channel state 
information (CSI) in frequency and spatial domains are acquired simultaneously using multi-input 
multi-output (MIMO) transmission with orthogonal frequency division multiplexing (OFDM). From 
several earlier studies [5]–[9], WLAN-based device-free indoor localization schemes have been 
proposed, where CSI feedback frames (beamforming weights) are collected and used as effective 
feature data for training machine learning (ML) models and for detecting a target object and its 
behavior. Based on results of these studies, the developed localization scheme was reported as working 
well in small-scale indoor scenarios. Nevertheless, the performance achieved in large-scale indoor and 
outdoor environments has not been clarified. 

This paper presents descriptions of our recent studies of WLAN-based device-free indoor 
localization in outdoor and large-scale indoor experiment scenarios. We demonstrate by 
experimentation that our developed localization scheme with small datasets enhances the localization 
accuracy effectively in specific areas by properly positioning the AP antennas and terminals. 
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II-7.3.  WLAN system using CSI-based localization approaches 

Figure III-7.1 presents principles of CSI acquisition for a device-free WLAN-based localization 
consisting of an access point (AP), a station (STA), and a CSI- acquisition terminal, where M, N, and 
S respectively denote the numbers of transmit antennas, received antennas, and streams. Here, a single 
target is present within an observation area. The principle of device-free localization is identification 
of the target object behavior through variations in wireless channel characteristics, as shown in 
frequency-domain CSI of this figure. Consequently, target detection is expected to be achieved by 
learning the relation between the states of the target and of the wireless channel without requiring that 
the target have any wireless device. A challenging issue is acquisition of a sufficient amount of CSI 
from an environment. An effective method is to use CSI in existing IEEE802.11-based WLAN 
systems. On the STA side, after channel estimation, a compressed version of a right-singular matrix 
obtained by singular value decomposition of the channel matrix is fed back to the AP side as beam-
forming weights (BFWs). 

Figure III-7.2 portrays a block diagram of CSI acquisition terminal that collects feedback frames 
sent by the STA. To improve the localization performance, an effective lightweight algorithm with a 
small dataset [6]–[9] is adopted, where current and past BFWs are concatenated as single data to build 
more accurate feature data. After concatenating multiple BFWs as single feature data, they are used 
both for off-line training and for on-line detection. 

 

 
Figure III-7.1 Principles of CSI acquisition for WLAN-based device-free localization. 

 

 
Figure III-7.2 Block diagram of the CSI acquisition terminal. 
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II-7.4.  Experiment scenario and results 

To demonstrate the effectiveness of the developed algorithm in various environments, we conducted 
evaluations of our developed localization scheme by experimentation in outdoor and large-scale 
indoor scenarios using an IEEE802.11ac-based WLAN [10]. The experiment scenario and setup are 
depicted in Figure III-7.3. As typical scenarios with few nearby reflective objects, we conducted 
experiments in an outdoor place and a gymnasium on our university campus as shown respectively in 
Figure III-7.3(a) and Figure III-7.3(b). Here, photographs of the experiment environments are also 
presented. In these figures, the observation areas are represented by the red-shaded area enclosed by 
the red dashed line. Experiment details are presented in an earlier report [9]. The coverage area in 
Figure III-7.3(c) is segmented into Q regions (areas), denoted as q = 1, … , Q, where Q is set as 20. 
For this experiment, we approach it as a multi-class classification problem to identify the location 
(label) of a single target object. The AP has four antennas connected by a coaxial cable. The STA is 
mounted on a tripod. The CSI feedback frames, which serve as the dataset, are collected at the CSI 
acquisition terminal. Random Forest model is used and built at the CSI acquisition terminal by off-
line training with measured CSI. We evaluate the detection probability, which is defined as a 
conditional probability that the ML result is the same as the actual label number, where a target person 
is within one of the Q=20 labeled areas. 

 

 

Figure III-7.3 Experiment scenario and setup [9]. 
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Figure III-7.4 presents the average area-wise detection probability (heatmaps) for outdoor 
experiment scenarios using different STA positions, where the experiment setup is the same as in 
Figure III-7.3(a). Here, green circles represent the positions of the AP antennas, whereas blue circles 
represent the STA positions. The heatmap intensity corresponds to the detection probability in each 
labeled area. Results show that areas directly facing the AP and STAs have higher detection probability, 
whereas other areas experience a marked drop in detection probability. This finding suggests that 
strategic placement of AP antennas and STAs can enhance detection probability intentionally in 
specific areas. 

Figure III-7.5(a) and Figure III-7.5(b) show average area-wise detection probability (heatmaps) in 
a large-scale indoor environment (gymnasium in Figure III-7.3(b)) for different STA positions. Results 
indicate that the area-wise detection probability has a similar tendency to that of outdoor scenarios in 
Figure III-7.4. Panel (c) presents the average detection probabilities of cover areas and the other areas, 
defined respectively as orange-colored (labels 5–16) and yellow-colored areas (labels 1–4 and 17–20). 
The findings confirm that much higher detection probability is achieved in cover areas where AP and 
STA are faced, than in the other areas. 

 

 

Figure III-7.4 Area-wise detection probability (heatmap) for outdoor experiment scenarios using 
different STA positions [9]. 

 

 

Figure III-7.5 Average detection probability for large-scale indoor experiment scenario [9]. 
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II-7.5.  Conclusion 

This report describes experiment-based evaluation and the achieved localization performance of a 
WLAN-based localization scheme with a small dataset in outdoor and large-scale indoor environments. 
The experimentally obtained results demonstrated that the detection probability can be enhanced 
effectively in specific locations by appropriately setting the AP and STA locations. Developing object 
detection algorithms for various use cases is left as a subject for our future work. 
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II-8.  A Fundamental Study on the Relationship Between Pedestrian Traffic and Wi-Fi 
CSI with Existing Outdoor Access Points 

Masakatsu Ogawa, Sophia University 

Abstract— This paper describes the relationship between pedestrian traffic and Wi-Fi channel 
state information (CSI) with existing outdoor access points (APs). Conducted on a university’s 
main street, pedestrian traffic was measured using YOLOv8, and CSI variation was analyzed. 
The results show a correlation between CSI variation and congestion conditions, demonstrating 
the feasibility of estimating pedestrian traffic using CSI variation from existing Wi-Fi APs. 

II-8.2.  Introduction 

Currently, Wi-Fi access points (APs) are deployed in various locations, such as homes, offices, schools, 
and public spaces. The primary role of Wi-Fi is to transmit and receive traffic between AP and stations 
(STAs). Additionally, APs broadcast network information through beacon frames. In the 5GHz band, 
beacon frames are transmitted using orthogonal frequency division multiplexing (OFDM) signals, as 
specified in the IEEE 802.11a standard. Therefore, channel state information (CSI), which represents 
frequency-domain characteristics, can be extracted from beacon frames. 

In schools and public spaces, APs are often deployed outdoors. CSI is expected to be useful for 
estimating outdoor conditions, such as pedestrian and vehicle traffic on roads. 

Until now, most studies on Wi-Fi CSI have focused on indoor environments, requiring users to 
deploy APs themselves. This paper addresses leveraging existing outdoor Wi-Fi APs to estimate 
pedestrian traffic on roads. This paper reports a fundamental study on the relationship between 
pedestrian traffic and Wi-Fi CSI using existing outdoor access points [1]. 
 

II-8.3.  Measurement Setup 

Sophia University has deployed Wi-Fi APs both indoors and outdoors. The university's main street is 
within the Wi-Fi coverage area. On class days, this street is crowded during break times, relatively 
clear during class times, and nearly empty during gate closing times. Therefore, pedestrian traffic 
changes from time to time. 

Figure III-8.1 displays the university's main street, captured by a camera for measuring pedestrian 
traffic. University Wi-Fi APs have been installed facing the main street, and one AP is selected based 
on the camera image. The four receiving antennas for acquiring CSI are installed in the same building 
as the university's Wi-Fi APs. CSI is measured using one of the four receiving antennas. Since the 
beacon interval is 100 ms, the CSI measurement interval is also 100 ms. When pedestrians walk 
through the measurement area, CSI fluctuates due to multipath reflections. Pedestrian traffic is 
measured using YOLOv8, an object detection algorithm. The measurement area is indicated by the 
red line in Figure III-8.1. 
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Figure III-8.1 Measurement environment. 
Left: Locations of measurement equipment. Right: Measurement area. 

 

II-8.4.  CSI variation 

The CSI variation is derived from the moving variance of CSI amplitude components [1]. Since beacon 
frames are transmitted by a single antenna, CSI is measured separately by each receiving antenna. Let 
k be the subcarrier index, and t the beacon frame index. Each element ℎ𝑚𝑚,𝑏𝑏,𝑡𝑡 of the CSI matrix is 
expressed as a complex number, as shown in Equation (1). In the IEEE 802.11a standard, the number 
of data subcarriers is 48. 

ℎ𝑏𝑏,𝑡𝑡 = �ℎ𝑏𝑏,𝑡𝑡�𝑒𝑒𝑗𝑗∠ℎ𝑘𝑘,𝑡𝑡 (1) 

The time-series data of CSI amplitude, 𝐻𝐻𝑡𝑡, at time t is defined in Equation (2). 
𝐻𝐻𝑡𝑡 = ��ℎ1,𝑡𝑡�, �ℎ2,𝑡𝑡�, … , �ℎ𝑏𝑏,𝑡𝑡�, … , �ℎ48,𝑡𝑡�� (2) 

To focus on the fluctuation of each subcarrier, the 𝐻𝐻𝑡𝑡 is normalized using the norm of 𝐻𝐻𝑡𝑡, ‖𝐻𝐻𝑡𝑡‖. The 
normalized time-series data of CSI amplitude, 𝐻𝐻�𝑡𝑡, is expressed in Equation (3). 

𝐻𝐻�𝑡𝑡 = ��ℎ1,𝑡𝑡�
‖𝐻𝐻𝑡𝑡‖

,
�ℎ2,𝑡𝑡�
‖𝐻𝐻𝑡𝑡‖

, … ,
�ℎ𝑏𝑏,𝑡𝑡�
‖𝐻𝐻𝑡𝑡‖

, … ,
�ℎ48,𝑡𝑡�
‖𝐻𝐻𝑡𝑡‖

� (3) 

Let tw be the time window for the moving variance. The normalized time-series data of CSI amplitude 
within this time window at time t, 𝑇𝑇𝐻𝐻�𝑏𝑏,𝑡𝑡, is given in Equation (4). 

𝑇𝑇𝐻𝐻�𝑏𝑏,𝑡𝑡 = �𝐻𝐻�𝑡𝑡−𝑡𝑡𝑡𝑡+1𝑇𝑇 , … ,𝐻𝐻�𝑡𝑡𝑇𝑇� (4) 
The sum of the variance of 𝑇𝑇𝐻𝐻�𝑏𝑏,𝑡𝑡 for each subcarrier is defined as CSI variation. The time series of CSI 
variation is obtained using a window shift. 
 

II-8.5.  Evaluations 

To clarify the relationship between pedestrian traffic and CSI variation, these characteristics are 
illustrated in Figure III-8.2. Pedestrians within this area are counted every ten seconds over a one-
minute period. Similarly, for CSI variation calculation, the time window is set to one minute, with a 
window shift of ten seconds. To eliminate environmental noise, the Hampel filter is applied to the CSI 
amplitude component of each subcarrier and the calculated CSI variation. 
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In this figure, the gate closing time is from 22:00 to 8:00, and the gray hashed areas represent class 
times. Obviously, pedestrian traffic increases before and after class times. Additionally, CSI variation 
also increase, and both characteristics exhibit similar trends. The CSI variation does not approach zero 
around 23:00, likely due to trees swaying in the wind. Except for this anomaly, these characteristics 
are correlated, allowing congestion status to be estimated using CSI variation. 

 

 

Figure III-8.2 Number of pedestrians and CSI variation. 
 

II-8.6.  Conclusion 

This paper described the relationship between pedestrian traffic and Wi-Fi CSI with existing outdoor 
APs. Showed that CSI is closely linked to congestion conditions. The results indicated the feasibility 
of estimating pedestrian traffic using existing APs without the need for the installation of new APs. 
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II-9.  Multipath-RTI: Millimeter-Wave Radio Based Device-Free Localization 

Minseok Kim 
Niigata University 

Abstract— This paper developed Multipath-RTI, a novel radio tomographic imaging (RTI) 
method utilizing millimeter-wave (mmWave) signals for device-free localization (DFL). Unlike 
conventional RTI approaches that struggle with multipath fading and require many physical 
anchor nodes, Multipath-RTI leverages virtual anchor nodes formed by multipath reflections. 
The study introduces compressed sensing-based image reconstruction, automatic parameter 
tuning, and DBSCAN clustering for multi-target location estimation. Results from simulations 
and mmWave channel sounding measurements show sub-0.5 m accuracy in complex indoor 
environments. 

II-9.1.  Introduction 

Indoor localization and position estimation have gained significant interest [1], [2]. While traditional 
methods based on time-of-arrival or RSS from emitter devices exist, their performance often degrades 
in real multipath environments. In smart homes and buildings, device-free localization (DFL) is 
increasingly preferred due to its non-intrusive nature. DFL is especially useful for daily applications 
like elderly or patient monitoring, and even for identifying individuals in security-critical scenarios 
where cameras may not be effective. 

Radio tomographic imaging (RTI) maps signal attenuation caused by target-induced shadowing 
using dense RF sensor networks [1]. The area is divided into 2D voxels, whose values are estimated 
from RSS measurements via an ill-posed inverse problem. In [1], a simple model assumes RSS is a 
weighted sum of voxel contributions along Line-of-sight (LoS) paths. However, in narrowband 
systems like ZigBee or Wi-Fi, multipath fading degrades RSS accuracy, requiring many anchor nodes 
for adequate resolution. While some works have improved narrowband RTI, few have explored 
multipath-assisted RTI [2]. For example, Cimdins et al. achieved sub-meter accuracy using MPCs 
from ultra-wideband CIRs, though accuracy dropped near anchors and multi-target cases remain 
unaddressed. 

To address these challenges, the author proposed Multipath-RTI as shown in Figure III-9.1 [3], an 
RTI method leveraging mmWave radios (e.g., 5G, WiGig) for high-resolution channel acquisition. 
This enables individual multipath component (MPC) tracking and the use of virtual anchor nodes. 
However, accurate multipath separation, MPC clustering, and path identification remain difficult. This 
paper introduces advanced signal processing techniques—compressed sensing, cross-validated 
parameter tuning, DBSCAN-based multi-target estimation, and ray-tracing-assisted MPC 
association—validated through double-directional mmWave measurements and simulations. 
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II-9.2.  Multipath-RTI Technique 

The target area is divided into a grid of 2D voxels. The received signal strength (RSS) variations are 
modeled as 𝛥𝛥𝒚𝒚(𝑡𝑡)  =  𝑾𝑾𝛥𝛥𝒙𝒙(𝑡𝑡)  +  𝒏𝒏(𝑡𝑡), where W is a weight matrix encoding the contribution of each 
voxel to each multipath component (Figure III-9.2). Here, multipath paths including LoS, single-
bounce, and double-bounce links are utilized. A sparse representation is obtained using compressed 
sensing techniques, solving an ill-posed inverse problem. The voxel values (Δx) are estimated using 
Elastic Net regularization [4], [5], balancing sparsity and stability. 

After estimating voxel values, the RTI image is post-processed using Otsu’s binarization to remove 
artifacts, followed by DBSCAN clustering to estimate the number and locations of targets (Figure III-
9.3). This method does not require prior knowledge of target count. Regularization parameters are 
tuned via cross-validation to optimize the trade-off between noise suppression and spatial accuracy. 

 

 
Figure III-9.1 Multipath-RTI technique. 

 
Figure III-9.2 Weight matrix. 

 

 
Figure III-9.3 Signal processing. 
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II-9.3.  Performance evaluation 

For real-world experiments, the proposed method was developed using a 60 GHz double-directional 
mmWave channel sounder. The channel sounder consists of in-house baseband units and COTS 
phased-array transceivers (EVK06002, Sivers IMA) using 16-element ULAs for beamforming. 
Operating at 58.32 GHz (WiGig CH1), it delivers 31 dBm EIRP with 19 dBi total gain. The azimuth 
beamwidth is ~6°, with elevation HPBW of 18° (Rx) and 45° (Tx). Beam steering from −45° to 45° 
allows 90° coverage via 12 beams; four array orientations extend this to 360° with 48 beams. A 4×4 
MIMO TDM scheme captures 16 channels per sweep, enabling fast double-directional channel 
measurements. Ray tracing generates expected path parameters, and a sub-grid CLEAN algorithm 
extracts MPCs [6]. 

To validate the DFL capability, mmWave double-directional channel measurements were 
conducted in an empty room (Figure III-9.4(a)), with anchor nodes placed at positions A–D. Due to 
hardware constraints, six Tx–Rx links were measured individually using a single Tx/Rx pair mounted 
at 1.3 m height. Measurements were taken under six conditions: Pos0 (no person) and Pos1–Pos5 (with 
a person). In post-processing, over 100 multipath components (MPCs) were extracted per link using a 
high-resolution algorithm [6]. Path association identified 47 valid paths—including LoS, single-
bounce, and double-bounce reflections—suitable for Multipath-RTI. Figure III-9.4(b) shows the 
resulting RTI images. Yellow ‘×’ markers denote estimated target centroids. Results indicate that RTI 
accuracy improves when more paths are blocked by the target. In positions with limited path 
obstruction (e.g., Pos4), the target blobs are smaller and more diffuse. Although measurement errors 
are generally higher than in simulation, all remain below 0.5 m. Optimal parameters depend on factors 
like room geometry, anchor configuration, and target distribution. Further simulations in L-shaped and 
obstacle-rich rooms show 88–96% sub-0.5 m accuracy using only 4–8 anchors. 

Performance was evaluated for 1–5 randomly placed targets. As target count increased, estimation 
error and failure rate also rose, especially when targets were close. The OSPA metric and failure 
analysis indicated a need for temporal filtering. Nevertheless, Multipath-RTI showed resilience by 
localizing multiple targets using clustering, without needing time-series tracking. 
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(a) Measurement setup 

 

 
(b) Localization results 

Figure III-9.4  Measurement and evaluation. 
 

II-9.4.  Conclusion 

This paper proposed a signal processing framework for Multipath-RTI using Elastic Net regularization 
and DBSCAN clustering for accurate, device-free localization. A ray-tracing-assisted method was 
introduced to associate multipath components, validated through mmWave measurements and 
simulations. Results showed sub-meter accuracy for both single and multiple targets. However, 
performance depends heavily on parameter tuning and anchor placement. Future work should address 
automated optimization, deployment strategies, and system scalability for real-time applications. 
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II-10.  Verification in an Anechoic Chamber toward the Realization of a Radio Wave 
Camera Using a Mobile Communication System 

Kazuma Tomimoto, Tomonori Ikeda, Ryo Yamaguchi,   
Toshiki Hozen, Syumpei Tabuchi,  

SoftBank Corp. Research Institute of Advanced Technology 

II-10.1.  Introduction 

Methods for increasing the capacity of mobile communication systems and methods for increasing the 
accuracy of sensing (radar) have many points in common, and the integration of wireless 
communication and sensing (ISAC: Integrated Sensing and Communication) is a major pillar of 6th 
generation mobile communications (6G) [1]. 

In this paper, in order to perform sensing without significantly disrupting the frame format of 3GPP-
compliant signals, the 5GNR downlink signal reflected from a target is received by a virtual array 
antenna, and the reference signal demodulation and direction estimation algorithms are applied. This 
result shows that it is possible to estimate the direction of a target by utilizing the reference signal 
contained in the 5GNR downlink signal. 
 

II-10.2.  Measurement Flow 

Figure III-10.1 shows the measurement system configuration. Table III-10.1  shows the measurement 
specifications. The measurement consists of two steps: measurement at actual wave sources and off-
line SSB demodulation and array signal processing. 

 

  
Figure III-10.1 Measurement system configuration. 

 
Table III-10.1 Publication summary of use case in ISAC. 
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II-10.2.1.  Measurement at actual wave sources 
Assuming sensing (radar) at the base station side, an Rx for a radio wave camera is installed near the 
Tx. The Tx for the radio wave camera is a single element, and it transmits 5GNR signals according to 
the parameters in Table III-10.1. 

The Rx for the radio wave camera receives signals while the antenna is moved by a positioner, and 
a virtual planar array antenna is configured to acquire receiving characteristics. In the actual 
measurement, there is a possibility that the measurement accuracy will be degraded due to the signal 
transmitted from the Tx going around the Rx for the radio wave camera. Referring to [2], to eliminate 
this effect, the receiving characteristics with and without the target installed are measured.  Assuming 
communication between the base station and the mobile station, the Rx for communication is placed 
at a distance of about 5 m from the Tx.  The area scanner connected to the Rx for communication is 
used to measure the receiving characteristics. 
 

II-10.2.2.  Off-line SSB demodulation and direction estimation algorithm 
The 5GNR demodulation process is performed on the receiving characteristics obtained in 2.1. From 
this, the receiving characteristics after the demodulation without target installation 𝑯𝑯ref(𝑘𝑘, 𝑙𝑙) and after 
the demodulation with target installation 𝑯𝑯meas(𝑘𝑘, 𝑙𝑙) are obtained. Where 𝑘𝑘 is the subcarrier number 
and l is the OFDM symbol number. Then, OFDM symbols containing the 5GNR reference signal SSB 
(SS/PBCH Block) are extracted and 𝑯𝑯meas(𝑘𝑘, 𝑙𝑙) is subtracted from  𝑯𝑯ref(𝑘𝑘, 𝑙𝑙) to obtain the response 
from the target, 𝑯𝑯(𝑘𝑘). 

The correlation matrix 𝑅𝑅R  is calculated using 𝑯𝑯(𝑘𝑘), and the Beamformer method in eq. (1) is 
applied to 𝑅𝑅R. As a result, an angular spectrum of the vertical direction 𝜃𝜃 and the horizontal direction 
𝜙𝜙 is obtained. 𝜆𝜆, 𝒓𝒓𝒏𝒏𝐲𝐲𝒏𝒏𝒛𝒛, 𝐸𝐸[∙],{∙}𝐻𝐻, and 𝒂𝒂(𝜃𝜃,𝜙𝜙) are the wavelength, position vector of the virtual planar 

array antenna's element, ensemble mean, Hermite transpose, and mode vector. 

 

II-10.3.  Measurement results 

Figure III-10.2 shows the measurement scene and results of the area scanner, and Figure III-10.3 shows 
the direction estimation result. 

The measurement system shown in Figure III-10.1 was configured in an anechoic chamber, and a 
target was actually set up for measurement. Figure III-10.2 shows that the physical cell ID (PCI) of 

𝐸𝐸BF(𝜃𝜃,𝜙𝜙) = 𝒂𝒂(𝜃𝜃,𝜙𝜙)𝐻𝐻 ∙ 𝑅𝑅R ∙ 𝒂𝒂(𝜃𝜃,𝜙𝜙)/2 (1) 

𝑅𝑅R = 𝐸𝐸[𝑯𝑯(𝑘𝑘)𝑯𝑯(𝑘𝑘)𝑯𝑯] (2) 

𝒂𝒂(𝜃𝜃,𝜙𝜙) = exp(𝑗𝑗𝒓𝒓𝒏𝒏𝐲𝐲𝒏𝒏𝒛𝒛 ∙ 𝑹𝑹(𝜃𝜃,𝜙𝜙)) (3) 

𝑹𝑹(𝜃𝜃,𝜙𝜙) =
2𝜋𝜋
𝜆𝜆

(sin𝜃𝜃 cos𝜙𝜙 , sin𝜃𝜃 sin𝜙𝜙 , cos𝜃𝜃) (4) 
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the area scanner is 1, which is the same value as the set PCI. This shows that the signal is transmitted 
from  
 

 
the Tx in compliance with the 5GNR frame format. Next, Figure III-10.3 shows a strong peak of 
spectrum at almost the same angle as that at which the target was placed. From this result, it was 
confirmed that the estimation of target direction is possible by using the reference signal included in 
the 5GNR downlink signal. 
 

II-10.4.  Summary and future work 

This paper conducted a basic verification of estimation of target direction using reference signals 
included in 5GNR downlink signals and confirmed its effectiveness. In the future, we will study to 
enhance target classification and estimation the use of polarization technology, and the use of machine 
learning. 
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Figure III-10.2 Measurement scene and result of 
the area scanner. Figure III-10.3 Direction estimation result. 
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Abbreviation List 

Abbreviation Explanation 

ABG Alpha-Beta-Gamma 

AI Artificial Intelligence 

ALD Atomic Layer Deposited 

AMC Adaptive Modulation and Coding 

AoA Angle of Arrival 

AR Augmented Reality 

ASIC Application Specific Integrated Circuit 

AWG Arbitrary Waveform Generator 

BAN Body Area Network 

BCB Benzo cyclobutene 

BER Bit Error Rate 

BF BeamForming 

BS Base Station 

CC Component Carrier 

CI Close-in 

CMOS Complementary Metal Oxide Semiconductor 

CPS Cyber Physical System 

CSI Channel State Information 

DC Direct Current 

DFT Discrete Fourier Transform 

DL Down Link 

DNN Deep Neural Network 

DOA Direction of Arrival 

DSP Digital Signal Processing 

EIRP Effective Isotropic Radiated Power 

EVM Error Vector Magnitude 

eWLB embedded Wafer Level Ball grid array 

FDD Frequency Division Duplex 

FDE Frequency Domain Equalize 
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Abbreviation Explanation 

FSPL Free Space Path Loss 

HARQ Hybrid Automatic Repeat Request 

HPBW Half Power Beam Width 

IBO Input Back Off 

IFFT Inverse Fast Fourier Transform 

InH Indoor hotspot cell 

ISAC Integrated Sensing and Communication 

ITU-R International Telecommunication Union Radiocommunication Sector 

KPI Key Performance Indicator 

LAN Local Area Network 

LNA Low-Noise Amplifier 

LOS Light of Sight  

LTE Long Tern Evolution 

MCM Multichip Module 

MIMO Multiple-Input and Multiple-Output 

MMIC Monolithic Microwave IC 

MS Mobile Station 

MOS Metal Oxide Semiconductor 

MOS-HEMT Metal-Oxide-Semiconductor Eigh-Electron-Mobility Transistor 

MSL Microstrip Line 

NLOS Non-Line of Sight 

NR New Radio 

NRNT New Radio Network Topology 

OAM Orbital Angular Momentum 

OFDM Orthogonal Frequency Division Multiplexing 

PA Power Amplifier 

PAE Power Added Efficiency 

PCB Printed Circuit Board 

PLE Path Loss Exponent 

QMH Qualitative Microwave Holography 

RAN Radio Access Network 
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Abbreviation Explanation 

RAT Radio Access Technology 

RD Relay Device 

RF Radio Frequency 

RIS Reconfigurable Intelligent Surface 

RMSE Root Mean Square Error 

RS Relay Station 

Rx Receiver 

SAG Selective-Area Growth 

SC Single Carrier 

SiP System-in-Package 

SISO Single-Input Single-Output 

SIW Substrate-Integrated Waveguide 

SNR Signal to Noise power Ratio 

TDD Time Division Duplex 

TDS Time Domain Spectroscopy 

THz Tera Hertz 

TMA Trimethylaluminum 

TSV Through-silicon Via 

Tx Transmitter 

UCA Uniform Circular Array 

UE User Equipment 

UL Up Link 

VR Virtual Reality 
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