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Preface 

The Radio Propagation Working Group of 6G Radio Technology Project, established 
within the XG Mobile Promotion Forum (XGMF), produced this white paper. It describes 
world trends in standardization and academia in radio propagation and Japan's efforts 
in the related fields. This white paper was prepared with the generous support of many 
who participated in the Radio Propagation Working Group. In particular, Chapter 1 was 
compiled by Mr. Kuno (NTT DOCOMO) with the help of Mr. Fukui (SHARP), Mr. Hirata 
(SHARP), Mr. Yokomakura (SHARP), Dr. Suyama (NTT DOCOMO), Dr. Omote 
(SoftBank), Dr. Yamada (NTT), Prof. Kim (Niigata University), Mr. Matsuno (KDDI 
Research, Inc.), and Mr. Nagao (KDDI Research, Inc.). Chapter 2 was compiled by Mr. 
Ito (KDDI Research, Inc.) with the help of those who introduced their activities. I would 
like to express my sincere gratitude to all of you who have contributed so much to this 
white paper. The cooperation of telecommunications industry players, academia experts, 
and representatives of various industries other than the communications industry has 
also been substantial. Thanks to everyone’s participation and support, I believe this 
white paper covered a lot of helpful information for future mobile system development 
and business creation discussions between industry, academia, and government and for 
investigating solutions to social issues in the telecommunications industry and across all 
sectors. We hope this white paper will help Japan create a better future for society and 
promote significant global activities. 
 

Tetsuro Imai 

Tokyo Denki University 
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I.  Trends of Radio Propagation towards Beyond 5G/6G 

This chapter introduces recent standardization and academic activities related to 
radio propagation. I-1 "Recent Standardization Activities" reports the standardization 
trends in 3GPP Release 19 and ITU-R. I-2 "Recent Academic Activities" reports the 
academic trends in Japan. 

 
I-1.  Recent Standardization Activities 

I-1.1.  3GPP Release 19 
I-1.1.1.  Channel Modelling for System Design 

Toward starting 6G studies in 3GPP Release 20, 3GPP is studying on channel 
modelling enhancements for FR3 (Frequency Range 3), i.e., 7-24GHz [1]. FR3 has great 
potential to expand mid-band spectrum while enabling macro deployment (e.g., sub-
urban macro: SMa) for wider bandwidth and coverage. Furthermore, the adoption of 
massive MIMO for FR3 introduces challenges such as near-field effects and spatial non-
stationary effects, where different spatial channels can be observed by different antenna 
elements. 

 
I-1.1.2.  ISAC Channel Modelling 

For ISAC realization in 6G, the discussion of ISAC channel modeling started from the 
May 2024 meeting based on the following formula [2], [3]. 

𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐻𝐻𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
It was first agreed that the ISAC channel model should consist of two channels: a target 
channel influenced by the sensing target and a background channel unaffected by the 
target. Six modes of monostatic or bistatic sensing between the TRP and the target were 
defined. In addition to the target, for example, an object that is different from the target 
but knows its location is defined as environment object (EO), and the discussion started 
based on how to determine the details of each channel of the target, background, and EO. 
Furthermore, environmental objects are classified into EO type-1 if they are the size and 
shape equivalent to the sensing target (For example, people, UAV, AGV etc.), and EO 
type-2 if they are much larger than the target (For example, walls, buildings, grounds, 
etc.), and the effects of each type will be discussed in detail [3]. 

The basis such as the generation of stochastic clusters by the target channel, and the 
deterministic parameters at the TRP and target were started by using the existing model 
of TR38.901 [4]. And it was agreed that the scattering point in the target is divided into 
single case and multiple case, and that the sensing is mainly by the value of RCS (radar 
reflection cross section) in the single scattering point [5], [6]. In addition to discussing 
the RCS model for each target, the remaining issues such as target polarization, 
diffraction/blockade modeling, multi-scattering point target modeling, EO type-2 
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modeling, and spatial consistency modeling are being discussed at the recent meeting 
[7], [8]. 

 
I-1.2.  ITU-R 
I-1.2.1.  NTN 

HAPS (High Altitude Platform Stations) and NTN (Non-Terrestrial Networks) may 
share frequencies with terrestrial networks and other radio systems. Therefore, accurate 
estimation of radio propagation characteristics is very important for system design and 
interference study of HAPS and NTNs. The ITU-R is standardizing a “Radio Propagation 
Estimation Method for Interference Study” to evaluate interference between different 
radio systems. This provides a foundation for smooth frequency sharing. 

Japan has contributed to the international standardization activities for ITU-R 
Recommendation P.1409, which is a radio propagation estimation method for HAPS, and 
its related recommendations in ITU-R SG3. These include models for estimating radio 
propagation characteristics under various environments assumed in HAPS, etc. Some of 
the models are applicable not only to HAPS but also to other NTNs, thus expanding the 
scope of standardization. 

 
I-1.2.2.  ITU-R SG 3 and SG 5 WP5D 

Propagation loss estimation methods for the 4.4–4.8 GHz, 7.125–8.4 GHz, and 14.8–
15.35 GHz bands are actively studied in SG 3 toward 6G. And the research is also 
advanced on the propagation loss estimation method over 100 GHz in anticipation of 
future sub-terahertz band applications. These are expected to be published as 
recommendations at the SG 3 meeting to be held in June 2025. Many contribution 
documents from Japan have been inputted into the Propagation Estimation Method Rec. 
P.1238 for Indoor Short Range and the Propagation Estimation Method Rec. P.1411 for 
Outdoor Short Range. 

In ITU-R SG 5 WP5D, the name "IMT -2030" was agreed at the ITU-R SG 5 WP5D 
meeting in February 2022 as the name of the next generation IMT (commonly known as 
6G). At the June meeting of the same year, the outline of the IMT for 2030 and beyond 
was agreed, and at the November meeting, a new report (ITU-R M. 2516, “Future 
Technology Trends”) was agreed. By this, the technology trends toward 2030 in which 
the realization of 6G is expected was arranged. Subsequently, at the June 2023 meeting, 
a new recommendation “Framework and overall objectives of the future development of 
IMT for 2030 and beyond” was agreed and published as recommendation ITU-R M. 2160. 
The recommendations provide a framework for future development and guidelines for 
overall goals toward the realization of IMT-2030. And at its 2024 meeting, SG 5 endorsed 
a new report, ITU-R M. 2541, “Technical feasibility of IMT in bands above 100 GHz”. In 
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this report, many propagation measurement results above 100 GHz bands from Japan 
are contributed. 

Currently, WP5D is considering the development of evaluation models for the 
following environments corresponding to 6 Usage Scenarios defined in Recommendation 
M. 2160. These tasks will be completed by the end of 2026. 
 
 IC (Immersive Communication): Indoor Hotspot-IC、Dense Urban-IC、Rural-IC 
 MC (Massive Communication): Urban Macro–MC 
 HRLLC (Hyper Reliable and Low-Latency Communication): Urban Macro–HRLLC、

Indoor Factory–HRLLC 
 AIAC (AI and Communication): None 
 ISAC (Integrated Sensing and communication): Indoor Factory–ISAC、 [Indoor 

Hotspot–ISAC、Dense Urban–ISAC、Rural–ISAC、Urban Macro-ISAC 
 UC (Ubiquitous Connectivity): Rural-UC 

 
I-2.  Recent Academic Activities 

I-2.1.  MmWave and Sub-THz Channel Modeling 

The development of 6G networks focuses on achieving ultra-high data rates, extremely 
low latency, and global coverage. Since 2020, the ITU has led international 6G research, 
with the WRC expected to finalize spectrum regulations by 2027. 3GPP has begun 
standardization through Release 19. Future 6G systems are expected to utilize spectrum 
beyond the mmWave bands, including the sub-terahertz range (100–300 GHz), such as 
the D-band and G-band, to support high-speed communication. In line with global 
technological trends, Japanese academic research institutions and universities are 
actively conducting extensive investigations into mmWave and sub-THz 
communications. Channel modeling is a fundamental prerequisite for 6G system design 
and performance evaluation serving as the foundation for system-level simulations, 
performance benchmarking, and optimization of physical layer technologies.  

Beyond 5G/6G is expected to become the foundational infrastructure for future 
industrial and societal activities, with global applicability. The National Institute of 
Information and Communications Technology (NICT) established the Information and 
Communications Research and Development Fund in 2022 to support long-term R&D 
and enhance Japan’s international competitiveness, promoting and encouraging 
research in the mmWave and sub-THz band to facilitate the smooth implementation of 
beyond 5G/6G networks. Regarding channel modeling research in the mmWave and sub-
THz bands, recent academic efforts in Japan include the development of a quasi-
deterministic site-specific channel modeling framework [9] and high-resolution 
spatiotemporal channel sounders for 24/60 GHz and 154/300 GHz measurements [10]. 
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Further, measurement-based analysis of multi-beam MIMO capacity at 300 GHz 
demonstrates the feasibility of spatial multiplexing at this frequency, with further 
capacity enhancement enabled by the deployment of passive reflecting surfaces [11]. 

 
I-2.2.  Radio Propagation for ISAC 

Integrated sensing and communication (ISAC) is expected to be realized as one of the 
important roles in 6G. Therefore, a channel model for evaluating the performance of 
ISAC has been actively studied in academia. The examination of the channel model for 
ISAC mainly considers the radar cross section (RCS) characteristic of the target which 
is modeled by the deterministic modeling technique and the statistical modeling 
technique. The examination targets of RCS characteristics are mainly UAV, Robot, 
human and vehicle. In Japan, the IEICE held symposiums on research and development 
results in sensing, mainly in the field of antenna propagation, with the session titles of 
"Wireless Sensing Technology for the Realization of a Smart Society" at the IEICE 
Society Conference in 2020 and "Towards the Fusion of Sensing and Communication" at 
the IEICE General Conference in 2025, and many results were reported. 

 
I-2.3.  RIS-Based Propagation Modeling 

The use of reconfigurable intelligent surfaces (RISs) has been gathering attention to 
improve various aspects of communication qualities such as coverage, channel capacity, 
power consumption, and physical security, and therefore, it is considered one of the key 
technologies for next-generation mobile communication systems. Since NTT Docomo’s 
world first demonstration of throughput improvement using RIS in 2018 [12], various 
companies have reported on developments related to RIS and examination of 
propagation models. 

KDDI research, Inc. examined the propagation via RIS in 28 GHz and 39 GHz bands 
using a newly developed dual-band and optically transparent RIS and commercial base 
station antenna mounted on a building [13]. Nihon Dengyo Kosaku, Co. Ltd. also 
examined in 5.6 GHz using a RIS, which switches the direction by the polarization of 
incident signal [14]. In each report, the received power 𝑃𝑃𝑡𝑡  via RIS agreed with that 
calculated with the radar equation obtained by following equation [15]: 

𝑃𝑃𝑡𝑡 =
𝐺𝐺𝑡𝑡𝐺𝐺𝑡𝑡𝜆𝜆2𝜎𝜎

(4𝜋𝜋)3𝑅𝑅𝑡𝑡2𝑅𝑅𝑡𝑡2
𝑃𝑃𝑡𝑡, 

where 𝑃𝑃𝑡𝑡 is a transmitting power, 𝐺𝐺𝑡𝑡 and 𝐺𝐺𝑡𝑡 are the gain of transmitting and receiving 
antenna, 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑡𝑡 are the distance from transmitting and receiving antenna to the RIS,  
𝜆𝜆 is wavelength,  𝜎𝜎 is the radar-cross section (RCS) of the RIS. Because the received 
power via RIS is determined with the RCS, various measurement results relating RCS 
of RIS are reported. 
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On the other hand, RCS is defined in the far-field region of RIS, and therefore, the 
radar equation is utilized in the far-field region. In practice, RIS is also utilized in the 
near-field region of RIS as reported in [16]. In the near-field region of the RIS, the 
received power via RIS is calculated with physical optics (PO)-based approach. In this 
approach, the received power is calculated by synthesizing the signal strength from each 
element of RIS as follows [15]: 

𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡
𝐺𝐺𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺𝜆𝜆2

64𝜋𝜋3
�Σ𝑏𝑏=1𝑁𝑁 �

�𝐹𝐹𝑏𝑏
𝑟𝑟𝑏𝑏𝑡𝑡𝑟𝑟𝑏𝑏𝑡𝑡

𝛤𝛤𝑏𝑏 exp�−
2𝜋𝜋
𝜆𝜆

(𝑟𝑟𝑏𝑏𝑡𝑡 + 𝑟𝑟𝑏𝑏𝑡𝑡)���
2

, 

where 𝑁𝑁, 𝐺𝐺, and 𝐺𝐺 are the number, gain, and area size of the element. 𝐹𝐹𝑏𝑏 and 𝛤𝛤𝑏𝑏 are the 
directivity and reflection (transmission) coefficient (phase and amplitude) of the 𝑛𝑛-th 
element. 𝑟𝑟𝑏𝑏𝑡𝑡 and 𝑟𝑟𝑏𝑏𝑡𝑡 are the distance between the 𝑛𝑛-th element and each transmitting and 
receiving element. Although PO based approach requires detailed information of 
reflecting element, it is utilized in both near-field and far-field region. 

In each model, the received power via RIS is characterized by three components: the 
propagation between the transmitter and the RIS, the reflection (or transmission) 
performance of the RIS, and the propagation between the RIS and the receiver. 

 
I-2.4.  Radio Propagation for HAPS / NTN 

At conferences such as the IEEE International Conference on Communications (ICC), 
the IEEE Global Communications Conference (GLOBECOM), the IEEE Wireless 
Communications and Networking Conference (WCNC), etc., have been actively 
discussing and studying the radio propagation of HAPS/NTN in recent years. Efforts are 
also being made toward international standardization of HAPS/NTN systems in 
cooperation with standardization bodies such as ITU-R (International 
Telecommunication Union, Radio Communication Sector). The main trends are as 
follows: 

 
1. improvement of propagation model accuracy 

- Influence of terrain and environment: HAPS/NTN systems exhibit different 
propagation characteristics from conventional terrestrial communication systems 
due to their high altitude above the ground surface. In particular, it is important 
to accurately model the effects of topography and buildings in urban areas. Various 
methods have been proposed and discussed at the conference, including 
propagation analysis using electromagnetic simulations such as ray tracing and 
the FDTD method, construction of propagation models based on measured data, 
and propagation prediction using machine learning. 
- Influence of meteorological conditions: The influence of meteorological conditions 
such as rainfall, clouds, and refractive index variations in the atmosphere on 
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propagation cannot be ignored. The conference is analyzing the relationship 
between meteorological data and propagation characteristics, and developing 
propagation models that take meteorological conditions into account. 
- Handling of moving objects: HAPS/NTN communications may be affected by 
Doppler effects and multipath fading differently than conventional 
communications. Propagation models that take into account the speed and travel 
path of the mobile terminal and the characteristic analysis of channel fluctuations 
are being developed at the conference. 

2. interference evaluation and countermeasures 
- Interference with terrestrial systems: HAPS/NTN is likely to share frequencies 
with existing terrestrial communication systems, and mutual interference is a 
concern. At the conference, research is being conducted on simulation and 
measurement methods to accurately evaluate the amount of interference, 
frequency utilization techniques to suppress interference, and beamforming 
techniques. 
- Interference between HAPS/NTNs: When multiple HAPS/NTNs are in operation, 
interference between HAPS/NTNs is also an issue. Technologies to minimize 
interference by optimizing the placement and operation of HAPS/NTNs and signal 
processing techniques to avoid interference are being studied at the conference. 3. 

3. performance evaluation and optimization 
- Throughput and delay: Methods to evaluate throughput and delay, which 
determine the communication performance of HAPS/NTNs, are being studied in 
consideration of propagation characteristics and system configuration. 
- Coverage: Antenna design, placement optimization, and beam control techniques 
are being studied to maximize coverage, the service area of HAPS/NTNs. 
- QoS: Techniques to provide Quality of Service (QoS) according to various 
application requirements, e.g., traffic control, resource allocation, scheduling, etc., 
are being studied. 

 
I-2.5.  Radio Propagation Emulation for Digital Twin 

With the spread of autonomous driving, drones, IoT, and other technologies, wireless 
communication systems such as Beyond 5G/6G are becoming increasingly complex and 
sophisticated. As a result, the need for the rapid and flexible development and 
deployment of new wireless systems is increasing. However, testing in real-world 
environments is not only expensive and time-consuming, but also difficult to reproduce 
under the same conditions, making it difficult to perform accurate comparative 
verification. 
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As a means of solving such issues, the research and development of digital twin 
technology for wireless communication, which can emulate the behavior of wireless 
systems in virtual space, is becoming more active. Wireless digital twin technology is 
expected to be a technology that enables the verification of wireless systems at low cost 
and high precision with less restrict by testing in real environments. 

 
I-2.5.1.  Wireless Emulation for Digital Twin 

Wireless emulation is a technology that reproduces the real-world radio environment 
in a virtual space to emulate the behavior of wireless communication systems. 
Conventional verification of wireless systems requires a large testing field or an 
expensive radio wave anechoic chamber, but wireless emulation makes it possible to 
reduce time and costs, set flexible testing conditions, and perform highly reproducible 
verification. The following systems are expected to be realized in the future. 

 
• A large-scale verification test is conducted by building a 3D model that is faithful 

to the real environment and operating a virtual radio device within a virtual 
space. 

• A radio system that uses a radio device that can be customized using software-
defined radio is developed and evaluated under various conditions. 

 
The National Institute of Information and Communications Technology (NICT) has 

developed a wireless emulator with the aim of evaluating wireless systems in real time 
under various conditions, as part of a research and development project by the Ministry 
of Internal Affairs and Communications. It supports wireless systems and frequencies, 
such as 5G and Wi-Fi, and can emulate up to 256 x 256 wireless links. Kyoto University 
and NICT conducted a multi-hop communication test using 10,000 wireless devices 
equipped with the Wi-SUN FAN communication standard for IoT using a wireless 
emulator. 

 
I-2.5.2.  Radio Propagation Emulation for Wireless Emulator 

As described above, there are high expectations for wireless emulators, but in order to 
accurately verify them in an actual usage environment, it is essential to have a highly 
accurate radio propagation model. The wireless emulator developed by NICT, introduced 
above, uses a ray tracing method and also considers a channel generation method based 
on the 3GPP TR 38.901 [9] map-based hybrid channel model. 

This method consists of stochastic clusters generated by path loss, Large Scaler 
Parameter (LSP), which represents time-space characteristics on macroscopic scales, 
and Small Scale Parameter (SSP), which represents multipath characteristics on 
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microscopic scales, as well as deterministic clusters generated by ray tracing, and the 
channel impulse response is generated based on the Cluster Delay Line (CDL) 
parameters generated from these [17]. In addition, to improve the accuracy of the 
generated channel, various methods have been proposed to construct a model that 
expresses site-specific path loss and LSPs using machine learning [18]. 

As described above, there are high expectations for wireless emulators, but in order to 
accurately verify them in an actual usage environment, it is essential to have a highly 
accurate radio propagation model. The wireless emulator developed by NICT, introduced 
above, uses two approaches for channel emulation; the ray tracing method and the 
stochastic model based on the 3GPP TR 38.901 [9] map-based hybrid channel model. 

In ray tracing, computational load tends to increase in environments with many 
multipaths. Therefore, parameter optimization suitable for indoor and outdoor 
environments, such as factories and offices, has been proposed as solutions to achieve 
the required accuracy with the necessary computing resources [19][20].  

On the other hand, the stochastic method consists of stochastic clusters generated by 
path loss, Large Scaler Parameter (LSP), which represents time-space characteristics on 
macroscopic scales, and Small Scale Parameter (SSP), which represents multipath 
characteristics on microscopic scales, as well as deterministic clusters generated by ray 
tracing, and the channel impulse response is generated based on the Cluster Delay Line 
(CDL) parameters generated from these [21]. In addition, to improve the accuracy of the 
generated channel, various methods have been proposed to construct a model that 
expresses site-specific path loss and LSPs using machine learning [22]. 

Channel generation is performed for each grid in the above approaches. However, since 
mobile terminals move continuously, a mechanism for interpolating discretely generated 
channels has been proposed [23]. 

Wireless emulator emulates radio propagation by integrating these technologies. 
 

I-2.6.  Radio Propagation Simulation for CPS 

With 6G in the 2030s, physical space and cyberspace will converge, and AI and others 
will be able to reproduce the real world on cyberspace (digital twin) and discover "future 
predictions" and "new knowledge" by emulating it beyond the constraints of the real 
world. Utilizing this in real-world services will enable the provision of various values 
and solutions. For this purpose, large-capacity, low-latency transmission of sensing 
information and other information from physical space and feedback from cyberspace to 
physical space through high-reliability, low-latency transmission of control signals are 
assumed. Ultra-high-performance wireless communications are indispensable for 
realizing advanced cyber-physical fusion (CPS). 
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Dynamic feedback from cyberspace to physical space requires real-time propagation 
and transmission emulation. In the field of propagation technology, various estimation 
techniques that are much faster and more accurate than conventional ray tracing 
methods are being studied for this real-time propagation emulation. 
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II.  Recent Activities of Radio Propagation in Japan 

This chapter presents initiatives related to radio propagation in Japan. II-1, 
"Measurement," reports analysis results of propagation characteristics based on 
measurement campaigns. II-2, "Simulation," reports the application of radio propagation 
simulation technologies and machine learning. 
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II-1.  Measurement 

II-1.1.  Indoor Propagation Channel Measurements in 160 GHz 

Nobuaki Kuno, Koshiro Kitao, Takahiro Tomie, Satoshi Suyama 
NTT DOCOMO, INC. 

 
Abstract— One of the requirements of the 6th generation mobile communication 

system (6G) is the high-capacity communication exceeding 100 Gbps. To realize this 
requirement, the use of sub-terahertz band and terahertz band of 100 GHz or more which 
can use very wide band is considered. In order to utilize new frequency bands, it is 
necessary to clarify the radio propagation characteristics of each usage scenario in those 
frequency bands for area design and system design. This article describes the 
measurement and analysis results of the spatiotemporal characteristics of the delay time 
in indoor office environment in the 160 GHz band. 

 
II-1.1.1.  Introduction 

The 5th generation mobile communication system (5G) will be launched as a 
commercial service in 2020, and various organizations are studying the realization of the 
6th generation mobile communication system (6G) in the 2030s. The requirements for 
6G include ultra-high speeds exceeding 100 Gbps and large-capacity communications 10 
times faster than 5G [1].  In order to realize this ultrahigh-speed and large-capacity 
communication, the terahertz band above the 92 GHz band, which has a wider 
bandwidth than 5G, is expected to be used, and various studies have been initiated for 
its application [2-6]. The 2019 World Radiocommunication Conference (WRC-19) has 
established as an action item the study of frequency identification for land mobile and 
fixed telecommunications operations in the 275-450 GHz band [7]. In addition, Working 
Party 5D (WP5D) of the International Telecommunication Union Radiocommunication 
Sector (ITU-R) has started to study new propagation channel models in the 92-300 GHz 
band for 6G system evaluation [8-11]. These propagation channel models are used for 
system design, including feasibility evaluations in real-world environments. In order to 
construct a propagation channel model for the sub-THz band, it is essential to 
understand the highly accurate propagation channel characteristics in this frequency 
band. 

The sub-THz band has an even shorter wavelength than the 28 GHz band used in 5G. 
Therefore, the arrival of radio waves is affected by the surrounding human body and 
surrounding structures, and the arrival conditions of radio waves also change 
significantly [2], [3]. The arrival conditions of radio waves are affected by the 
surrounding human body and structures, etc., and change significantly. Therefore, in 
order to construct a propagation channel model for the sub-THz band, it is necessary to 
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elucidate the effects of propagation loss and shielding. The authors have investigated 
propagation channel characteristics in the 160 GHz and 300 GHz bands by measuring 
angular profile characteristics in an indoor conference room environment [12]. In this 
paper, the delay characteristics of the 160 GHz band in an indoor office environment 
were measured, and the measurement contents and results are presented. 

 
II-1.1.2.  Measurement environment and method 

The measurements were performed in a room in the NTT DOCOMO R&D Center. The 
measurement environment is shown in Fig.  II-1. It is an office environment with 
wooden-topped desks placed at regular intervals and displays lined up on the desks. The 
upper and left sides of Fig.  II-1 are glass windows, and the lower and right sides are 
concrete walls. The three doors at the bottom of the figure are the entrances. The 
multiple separated spaces near the entrances and the spaces at the upper right and left 
are conference rooms separated by aluminum blinds and glass, with desks and chairs 
inside. The overall size of the room is approximately 50 m (right and left), 16 m (up and 
down), and 2.7 m (height) as shown in the figure. 

 

 

Fig.  II-1. Measurement environment. 
 
Table.  II-1 shows the measurement parameters. An OFDM signal with a center 

frequency of 160 GHz and a bandwidth of 2 GHz was used for the measurements. An 
omni-antenna was used for the transmitter (Tx) and a horn antenna with a gain of about 
25 dBi was used for the receiver (Rx). This allows measurement with a delay resolution 
of 0.5 ns. The resolution is about 15 cm in distance. The Tx and Rx antennas were 
measured at a height of 2 m and 1 m, respectively, assuming an access point near the 
ceiling and a tabletop wireless system. The position of the antennas in relation to the 
floor and ceiling is shown in Fig.  II-2. The distances between the Tx and Rx antennas 
ranged from 8.5 m to 35.5 m. In addition, measurements were taken by varying the 
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elevation angle of the Rx antenna to 0, 10, and 20 degrees to compare differences in the 
effects of reflections from the ceiling and other factors. 

 
Table.  II-1. Evaluation Parameters 

Parameter Value 

Center frequency 160 GHz 
Transmitting signal OFDM 
Bandwidth 2 GHz 
Tx antenna Omnidirectional antenna 
Rx antenna Horn antenna 
Tx antenna height 2 m 
Rx antenna height 1 m 
Delay resolution 0.5 ns 
Maximum delay 128 ns 

 

 

Fig.  II-2. Relation between Tx and Rx antenna locations. 
 
The delay profile was measured by pointing the Rx antenna in the right direction in 

Fig.  II-1, taking that direction as 0 degree, and rotating it 360 degrees counterclockwise 
horizontally from there. Since it depends on the surrounding multipath, it is expected 
that the measurement results will vary depending on the location of the antennas. 
Therefore, as shown in Fig.  II-1 Tx antennas were placed at the edge of the room, and 
Rx antennas were measured at 19 points. Here, of the 19 points, 7 measurement points 
are at 𝑌𝑌 = 0, which is on the LoS (Line-of-Sight) from Tx, and the remaining 12 points 
(𝑌𝑌 ≠ 0) are at the NLoS (Non-Line-of-Sight). The angular profiles were calculated by 
power-multiplying the paths for each horizontal angle. 

 

II-1.1.3.  Measurement Results 
Fig. II-3 shows the measured delay profile at the point (-8.5, 0), which is the closest 

LoS measurement point from Tx. The received power is normalized to the highest value 
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among the measured data. The distance between the Tx and Rx antennas is 8.5 m, and 
the difference in antenna height is 1 m. Therefore, the direction of the Tx antenna from 
the Rx antenna is at an elevation angle of 11.7 degree, and a 0 dB signal was observed 
at the nearest elevation angle of 10 degree in Fig. II-3 (b). The strongest paths were 
observed at a horizontal angle of 0 degree and a delay time of about 28.3 ns in the 
direction of the Tx antenna. In Fig. II-3 (a) and Fig. II-3 (b), strong radio waves were 
observed at a horizontal angle of  ±50 degree and a delay time of around 40 ns. In Fig. 
II-3 (c), the same radio waves and those at a horizontal angle of 0 degree and a delay 
time of approximately 28.3 ns were both observed to be weak. This may be due to the 
fact that the direct wave and the reflected wave near the ceiling are out of the beamwidth 
of the Rx antenna. 

 
Fig. II-4 shows the measured delay profiles at the point (-17.5, 0) as more distant LoS 

point. Same as Fig. II-3, Fig. II-4 is also a point on the 𝑌𝑌 = 0 line of sight, with the 
distance between Tx and Rx doubled to 17.5 m. And it was confirmed that the direct 

(a) Measurement results at an elevation angle of 0 degree. 

(b) Measurement results at an elevation angle of 10 degree. 

(c) Measurement results at an elevation angle of 20 degree. 
Fig. II-3. Delay profile measurement result at point (-8.5, 0). 
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wave had the strongest received power from 17.5 m to around 56.6 ns of delay time. 
Furthermore, for the paths of reflections and diffractions from the surroundings, it was 
confirmed that they were received around ±30 degrees, unlike Figure 1, where they were 
around ±50 degrees. This is thought to be due to the fact that the distance between Tx 
and Rx has increased, resulting in an obtuse angle with objects such as desks near the 
line of sight and a narrower angular spread as seen from Rx. 

 

 
Fig. II-4. Delay measurement results for an elevation angle of 0 degrees at (-17.5, 0). 
 
Fig. II-5 shows the extracted results of the delay profile measurements at 0° elevation 

and horizontal angles in Fig. II-3 (a). As in Fig. II-3 (a), a strong radio wave, which is 
considered to be a direct wave, was observed at a delay time of approximately 28.3 ns. 
In addition, a slightly stronger radio wave of about -10 dB was observed at a delay time 
of less than 70 ns. Compared to Fig. Fig. II-3 (b) and Fig. II-3 (c), the strongest signals 
were received at an elevation angle of 0°, and the delay time suggests that the waves 
were reflected once on the ceiling and once on the floor. 

 

 
Fig. II-5. Delay measurement results for horizontal and vertical angles of 0 degrees at 

point (-8.5, 0). 
 
Fig.  II-6 shows the CDF of the delay spread calculated for 7 LoS points with 𝑌𝑌 = 0 and 

12 NLoS points with 𝑌𝑌 ± 0. The median of CDF for both LoS and NLoS points was 
approximately 5.5 ns, and the trend was similar. This indicates that the LoS and NLoS 
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points are similar in this measurement environment. This is thought to indicate that 
reflected and diffracted waves arrived from a certain range for both the LoS and NLoS 
points in this measurement environment. 

 

 
Fig.  II-6. CDF of delayed spread. 

 
II-1.1.4.  Conclusion 

This paper described the measurement method and results of the delay profile in the 
160 GHz band, one of the frequencies being considered for use in 6G, in an indoor office 
environment. By using a 2-GHz OFDM signal, we were able to confirm reflected waves 
on the ceiling, reflected waves between the ceiling and floor, and diffracted waves from 
desks and other objects at the NLoS point, in addition to direct waves. Further 
evaluation will be conducted in the future to develop a propagation channel model. 
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II-1.2.  300GHz Band Propagation Loss in the Vicinity of the Human Body  

Kazuki Takezawa, Takahiro Hayashi 
KDDI Research, Inc. 

Abstract— The use of the THz band is being considered for ultra-high-speed and high-
capacity communications for Beyond 5G and 6G. As one of the use cases, the virtualized 
terminal has been proposed to improve the communication speed of the uplink by 
applying it to the connection between peripheral devices such as wearable devices and 
user equipment (UE). To evaluate the wireless performance of this technology, it is 
necessary to clarify the radio propagation characteristics in the vicinity of the human 
body and to construct a propagation path model. The authors measured diffraction losses 
in the 300 GHz band using a human phantom in an upright position and showed that 
although the human body can be approximated by two screens and estimated accurately 
by the Double Isolated Edge (DIE) model, verification using an actual human body limits 
this accuracy and may be influenced by clothing. The results showed that this is not the 
case. This article introduces a propagation loss estimation method that takes this effect 
into account and shows that the RMSE (Root Mean Square Error) can be estimated with 
a high accuracy of approximately 8.35 dB by using actual measurements from 
experiments assuming walking movements. 

 
II-1.2.1.  Introduction 

For the Beyond 5G and 6G, realization of ultrahigh-speed and large-capacity 
communication exceeding 100 Gbps is expected, and the use of the THz band, which is 
expected to secure ultrawide bandwidth, is being considered for this purpose [1]. Various 
studies and proposals have been made regarding the use cases of these frequency bands, 
including communication within data centers and kiosk stations [1]. Among them, we 
have proposed a virtualized terminal technology that wirelessly connects peripheral 
devices such as wearable devices to the UE in the THz band and connects to the base 
station by converting to a relatively lower frequency, such as the millimeter wave band 
at the peripheral device [1,2]. In this technology, the UE and peripheral devices 
cooperate to virtually bundle each device's antennas, thereby eliminating the physical 
constraints of conventional UEs, such as transmission power and the number of 
antennas, and aiming to improve the communication speed of the uplink. In this context, 
to evaluate the wireless performance of this technology and optimize the number and 
position of peripheral devices, transmission power, antenna patterns, etc., to achieve the 
target throughput, it is necessary to simulate the variation in received power due to 
propagation loss and fading changes for each posture. For this purpose, it is necessary 
to clarify the radio wave propagation characteristics, especially in the THz band in the 
vicinity of the human body, and to construct a propagation channel model. 
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In this section, we describe the estimation method for diffraction loss of the human 
body that we have devised. Furthermore, as an example, we state that for the receiving 
points in the NLoS region, where the diffraction path is dominant, measurements taken 
using a human body in a walking posture can be estimated with an accuracy of 
approximately 8.35 dB RMSE. 
II-1.2.2.  Model correction term considering the influence of clothing 

In the future, it is necessary to construct a model that adapts to various clothing 
scenarios, and for this purpose, consideration of a model based on physical interpretation 
is essential. Therefore, in this Section, we propose a diffraction loss model that considers 
the influence of clothing via the FDTD simulation and the measurement values reported 
in [3]. This model is based on the DIE model, which can accurately estimate the condition 
without clothing and adds a term to correct for the influence of clothing. As revealed in 
the simulation in Section 2, the newly occurring paths due to clothing are diffraction on 
the clothing surface and reflection inside the clothing. In [4], it was reported that 
scattering occurs due to clothing, and the angle of arrival tends to spread three-
dimensionally. However, in this study, based on the considerations reported previously 
[3], we generate a correction term by fitting 𝜃𝜃𝑡𝑡+𝑡𝑡  and 𝑐𝑐𝑐𝑐𝐺𝐺𝜃𝜃𝑡𝑡−𝑡𝑡 , as shown in Fig. 1, to 
represent this phenomenon simply. The diffraction loss model with this correction term 
is as follows in Equation (1). 

 
𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ = 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 23.87 × 𝜃𝜃𝑡𝑡+𝑡𝑡 − 9.55 × 𝑐𝑐𝑐𝑐𝐺𝐺𝜃𝜃𝑡𝑡−𝑡𝑡   (1) 

 
The parameters𝜃𝜃𝑡𝑡+𝑡𝑡 and𝜃𝜃𝑡𝑡−𝑡𝑡 indicate the angles formed by the transmission point (Tx), 

receiving point (Rx), and the virtual diffraction point, using the 3D model of the human 
body including clothing as shown in Fig.  II-7. 

 

Tx
Rx

Human
Body

Cloth Angle with respect to
the straight ahead
direction

Angle with respect to 
the direction of 
normal reflection

Tx
Rx

Human
Body

Cloth

Fig.  II-7. Parameters for the diffraction loss correction term when clothing is included 
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Note that 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the diffraction loss obtained by approximating the human body as 

a double screen and using the DIE model[P.526]using parameters in Fig.  II-8. 

 

Fig.  II-8. Parameters of the diffraction loss model for the human body. 
 

II-1.2.3.  Evaluation via measurements on real human bodies 
In this section, we report the evaluation of the diffraction loss model with the added 

correction term, which uses measurement results from real human bodies. As shown in 
Fig.  II-9 this measurement was conducted by assuming a walking posture, setting Tx at 
the position of the right hand, and placing Rx at a comprehensive position 7 cm from the 
surface of the human body, thereby extracting only the conditions where the diffraction 
path is dominant.  

Fig.  II-10 shows the measured values from which only the NLoS region was extracted 
and the evaluation results obtained via these measurements. The horizontal axis 
represents the distance between the antennas, and the vertical axis represents the 
propagation loss. The black dots are the measurement values, the green rectangles are 
the values estimated via the method previously proposed by the authors [5], and the red 
dots are the estimated values with the correction term added to the calculation of the 
power of the diffraction path. For comparison with previous studies, the KED estimates 
are plotted as gray triangles. Note that the parameters used for this estimation were 
extracted from a 3D model of a clothed human body. 

The estimated values indicated in green tend to overestimate the propagation loss, 
whereas the estimated values with the correction term added tend to estimate well. 
Table.  II-2 shows the accuracy of these estimates, where the RMSE was significantly 
improved from 14.81 dB to 8.35 dB in the NLoS region. In addition, the proposed method 
with the correction term produced more accurate results than the estimation with 
conventional KED; this is likely because the correction term was able to properly 
compensate for the influence of clothing on propagation loss. 

In the future, we will study parameters and their extraction methods to further 
improve the accuracy of this estimation. We also study the correction terms and 
comparative evaluations for conditions different from those of the clothing used in this 
experiment. 

a b c
RxTx
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Fig.  II-9. Evaluation using measurement results from a real human body 

 

Fig.  II-10. Evaluation using measurement results from a real human body 
 

Table.  II-2. Estimation accuracy of measurement by real human body (RMSE) 
 Proposed Conventional KED 

NLoS 8.35 14.81 11.17 
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II-1.3.  300GHz Band Propagation Characteristics in the Indoor and Outdoor 
Environment 

Satoshi Ito, Takahiro Hayashi 
KDDI Research, Inc. 

Abstract—The utilization of the terahertz bands is expected for realization of 6G 
systems. In this article, we provide the results of propagation experiments conducted at 
the 300-GHz band in both indoor and outdoor environments, including NLOS conditions. 
We report the obtained angle of arrival characteristics. Furthermore, on the basis of the 
arrival wave distribution obtained from the angle of arrival measurements, we analyze 
and describe the propagation mechanisms of the 300-GHz band in NLOS regions. 

 
II-1.3.1.  Introduction 

Towards 6G, one of the key technological elements for achieving ultrahigh-speed data 
transmission is the utilization of the terahertz (THz) band, which offers a wider 
bandwidth than the millimeter-wave band currently employed commercially in 5G. The 
ThoR project [1] has focused on exploring the applications of high-speed, high-capacity 
wireless networks using the THz band for constructing back- and fronthaul networks to 
connect mobile communication system base stations. Additionally, the use of the THz 
band as a relay link in conjunction with millimeter-wave bands in virtualized terminals 
is being considered [2]. However, to evaluate the feasibility and performance of these 
utilization methods, a propagation model applicable to the THz band is essential.  

According to a survey paper on propagation characteristics above 100 GHz [3], reports 
on the propagation characteristics of the 300 GHz band are fewer than those for the 100-
GHz band, particularly for non-line-of-sight (NLOS) conditions, which are even fewer 
outdoors than indoors. Papers reporting the NLOS characteristics of the 300-GHz band 
since the survey paper [3] include [4][5] for outdoor environments and [6] for indoor 
environments, indicating a need for more measurement results in various environments 
to statistically analyze the characteristics of the 300-GHz band, including under NLOS 
conditions. Therefore, we report the analysis results for the measured angle of arrival 
(AoA) characteristics of the 300-GHz band, primarily focusing on the less frequently 
reported NLOS conditions in both outdoor and indoor environments.  

 
II-1.3.2.  Measurement Environments 

The measurement campaigns were conducted in both outdoor and indoor 
environments. First, outdoor measurement campaigns were conducted on roads and in 
parking lots surrounding an approximately 20-m-long building, as shown in Fig.  II-11. 
The measurement environment was divided into an NLOS area obstructed by buildings, 
a vegetation NLOS (VNLOS) area obstructed by vegetation, and a LOS area. 
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Additionally, AoAs were measured at representative points in the NLOS and VNLOS 
areas, specifically at Rx1 and Rx2, which are obstructed by the building, and at Rx3, 
which is obstructed by vegetation.  

Indoor measurement campaigns were conducted in the corridor inside a building. The 
measurement environment consists of a corridor in the basement of the building without 
windows and is divided into LOS and NLOS areas involving a single turn. Additionally, 
AoAs were measured at representative points in the NLOS area, specifically at Rx1 and 
Rx2, which occur immediately after the transition from the LOS area to the NLOS area. 
For additional details on the measurement specifications, the reader is referred to [7]. 

 

 
Fig.  II-11. Top view of the measured 

outdoor environment[7]. 

 
Fig.  II-12. Top view of the measured 

indoor environment[7]. 
 

II-1.3.3.  Measurement Results 
II-1.3.3.1.  Outdoor Environments 
The AoA values at Rx1 to Rx3 are described. At Rx1, as in Fig.  II-13 (a), weak 

diffracted waves from the building edge were noted due to a high diffraction angle, with 
wave A dominating. This wave reflected and scattered from a metallic mirror and trees, 
then off the ground. Reflections from the mirror and trees at B, scattering from 
vegetation at C, and a pole at D were observed. Waves from E were secondary reflections 
from building walls, indicating that under NLOS, reflections and scattering dominate 
over diffraction near building edges. At Rx2, as in Fig.  II-13 (b), with a lower diffraction 
angle, wave A remained strong, supplemented by waves from metallic fixtures at B and 
C and visible trees. Reflected and scattered waves from fixtures and trees significantly 
contributed to power. Finally, at Rx3, as in Fig.  II-13 (c), waves from A, B, and E passing 
trees were observed, but none through trees, due to density and loss from branches and 
foliage, highlighting the need to understand tree characteristics. Other waves included 
reflections from a lamp post at C and building edges at E and F, and scattering from 
trees at G. Results show that in the 300-GHz band, diffraction loss rises with angle, not 
aiding received power, while under NLOS and VNLOS, main paths are reflected and 
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scattered waves from fixtures and trees, and low-angle diffracted waves from building 
edges. 

 

 
II-1.3.3.2.  Indoor Environments 
We describe the AoA values at Rx1 and Rx2. At Rx1 (Fig.  II-14 (a)), weak diffracted 

waves were noted from deep angles at F, while strong waves arrived from A and C at 
corridor edges with less acute angles, similar to outdoor observations. Scattered waves 
from the surveillance camera at B highlight that even small metal fittings can 
significantly contribute to received power. Waves at D and E were scattered from metal 
door parts on corridor sidewalls. 

At Rx2, farther from the transmitter (Fig.  II-14 (b)), A indicates edge-diffracted waves, 
while B represents wall-reflected waves from A, confirming long-distance propagation 
due to multiple reflections, supported by propagation loss characteristics. 

These findings suggest that in the 300-GHz band, deep angle diffracted waves indoors 
exhibit significant losses and contribute minimally to power, similar to outdoors. 
Strongly reflected and scattered waves can arrive from fittings like surveillance cameras. 
Thus, using small reflecting panels can expand coverage indoors while keeping 
installation costs low. 

(a) Rx 1 (b) Rx 2 

(c) Rx 3 
Fig.  II-13. AoA distributions with photographs obtained at each outdoor Rx [7]. 
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(a) Rx 1 (b) Rx 2 

Fig.  II-14. AoA distribution with photographs obtained at each indoor Rx. 
 

II-1.3.4.  Conclusion 
We report measured AoA characteristics in the 300-GHz band, focusing on the NLOS 

conditions. The measured AoAs revealed that the contribution of diffracted waves from 
deep diffraction angles was minimal. Instead, the contributions of diffracted waves from 
shallow angles, metallic furnishings, and trees dominated under NLOS conditions.  
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II-1.4.  Path Loss Characteristics from Microwave to Sub-Terahertz Bands in Urban 
Environment for Beyond 5G 
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Nobuaki Kuno, Koshiro Kitao, Takahiro Tomie, Satoshi Suyama  
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Abstract — Sixth generation (6G) mobile communication networks will require 
extremely high-speed and high-capacity communications data rates exceeding 100 Gbps 
using sub-terahertz bands. However, path-loss characteristics above 100 GHz have not 
been sufficiently studied in terms of distance attenuation and frequency dependency. 
Therefore, to clarify the system performances of 6G in new frequency bands and 
determine the service frequency bands, it is needed to clarify the basic path-loss 
characteristics above 100 GHz. We investigated the path-loss characteristics and 
propagation mechanism from 2 to 300 GHz in an urban microcell (UMi) environment. 
We also clarified the dominant paths that affect the distance attenuation and frequency 
dependency of path loss. 

 
II-1.4.1.  Introduction 

New spectrum used for 6G and beyond 5G are sub-terahertz (THz) bands above 100 
GHz for extremely high-speed communication data rates exceeding 100 Gbps. The ITU-
R Working Party 5D (WP5D) has agreed on a new recommendation on the Framework 
and overall objectives of the future development of IMT for 2030 and beyond and agreed 
a report on the technical feasibility in bands above 100 GHz [1]-[4]. 5G have been rolled 
out using a combination of sub 6 GHz and millimeter wave (mmW) band. And as 
networks move toward beyond 5G, newly exploiting the mid-bands in 7-24 GHz and the 
sub-THz bands, utilization of the combination of multiple frequency bands from 
microwave to sub-THz bands will be necessary for achieving extremely high-speed and 
reliable communications. In this study, aiming to exploit the new spectrums for beyond 
5G, we reported the path loss, namely basic transmission loss, from microwave to sub-
THz bands in urban environment [5]-[8].  

 
II-1.4.2.  Key Propagation Phenomena Affecting Radio Channel Characteristics in 

bands above 100 GHz 
Fig.  II-15 shows the key propagation phenomena that affect channel characteristics 

for the sub-THz bands in urban environment. ITU-R M.2412 [9] proposed models that 
can calculate path loss that building shadowing and human blockage is considered and 
the building penetration loss in accordance with the mixing ratio of building materials. 
The path loss governs the coverage distance and the interference levels for the 
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coexistence of radio services using the same frequency bands. However, the M.2412 
path loss models are constructed by using measurement frequency bands below sub 6 
GHz and mmW bands [9]. Therefore, it is necessary to clarify the path loss 
characteristics, which includes frequency dependency from microwave to sub-THz bands 
for operating the combination of multiple frequency bands.  

 
Fig.  II-15. Key propagation phenomena in bands above 100 GHz [5][6]. 

 
II-1.4.3.  Measurement System Setup 

The measurement system uses frequency bands at 2, 26, 97, 158 and 300 GHz. 
Continuous wave (CW) signal was transmitted using the omni-directional antenna [7][8]. 
The omni-directional antenna with 60° of half power beam width (HPBW) for 2, 26, 97 
GHz in the elevation plane, 20° of HPBW for 158, 300 GHz. At the 2 GHz, the Rx omni-
directional antenna measured the path loss. At the 26, 97, 158 and 300 GHz, Rx 
measured the CW signal while the Cassegrain antenna with 4° of HPBW for 26 GHz, 2° 
of HPBW for 97 GHz, 1° of HPBW for 158 and 300 GHz was rotated 360 degrees in the 
azimuth plane and up to 20 degrees in the elevation plane. Path loss equivalent to the 
omni-directional antenna is obtained by this measurement method.  

 
II-1.4.4.  Path Loss Characteristics 

The path loss measurement environment around Tokyo Station is shown in Fig.  II-16 
[7]. Path loss was measured at measurement points of the LOS and NLOS environment. 
The Tx antenna was set on the rooftop of a measurement vehicle with height of 2.55 m, 
which is lower than the surrounding building’s rooftop level. The Rx antenna was fixed 
to the trolley, with height of 1.7 m. We compared the free space path loss (FSPL) 
𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑓𝑓,𝑑𝑑) = 32.4 + 20 log10 𝑓𝑓 + 20 log10 𝑑𝑑 , M.2412, and measurement results. M.2412 
path loss model was used a mandatory model for IMT-2020. The close-in (CI) model is 
always used to characterize the path loss for LOS and the Alpha-Beta-Gamma (ABG) 
model for NLOS. The CI model and ABG model are expressed by following equation:  

𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼(𝑓𝑓,𝑑𝑑)(𝑑𝑑𝑑𝑑) = 𝑃𝑃𝑃𝑃𝐹𝐹𝐼𝐼𝐹𝐹𝐹𝐹(𝑓𝑓, 1) + 10𝑛𝑛 log10 𝑑𝑑 + 𝑋𝑋𝜎𝜎𝐼𝐼𝐼𝐼 
where 𝑛𝑛 is the path loss exponent (PLE), and 𝑋𝑋𝜎𝜎𝐼𝐼𝐼𝐼 is a shadow fading with a standard 

derivation of 𝜎𝜎 in dB.  

Rain attenuation

Channel non-stationarity and loss due to 
structure, vehicle and human blockage

Scattering 
from rough 
surface

Vegetation 
attenuationBuilding penetration loss

Attenuation by 
atmospheric gases Base station

Mobile station
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𝑃𝑃𝑃𝑃𝐼𝐼𝐴𝐴𝐴𝐴(𝑓𝑓,𝑑𝑑)(𝑑𝑑𝑑𝑑) = 10𝛼𝛼 log10 𝑑𝑑 + 𝛽𝛽 + 10𝛾𝛾 𝑙𝑙𝑐𝑐𝑙𝑙10 �
𝑓𝑓

1 GHz
�+ 𝑋𝑋𝜎𝜎𝐼𝐼𝐴𝐴𝐴𝐴 

where 𝛼𝛼 and 𝛾𝛾 are the PLE and frequency dependence on path loss, respectively, 𝛽𝛽 is 
the optimized offset in path loss. From Fig.  II-17 (a) for LOS, the measured path loss 
indicate the similar tendency as the predicted path loss of FSPL. It is obvious that the 
direct wave in the LOS environment was dominant. Therefore, the PLE for M.2412 path 
loss model and PLCI is equivalent to that for FSPL. From Fig.  II-17 (b) for NLOS, PLABG 
by regressing the measured path loss had steeper PLE and larger frequency dependency 
than the calculation results using M.2412 path loss model. In urban NLOS environment, 
the diffracted and reflected waves with multiple reflection were major paths. Since the 
diffraction loss depends on the wavelength and the frequency dependency is significantly 
larger than M.2412 path loss model. Specifically, in the case of scattering from a building 
rough surface, the higher the frequency, the larger the scattering power and the lower 
the reflection power, so it is assumed that since larger reflected loss occurred, the path 
loss had steep distance attenuation. 

 

  
(a) measurement system setup (b) measurement routes 

Fig.  II-16. measurement system setup and routes [7] 
  

Table.  II-3. Comparison results [7] 
 n Constant loss (dB) 𝑿𝑿𝝈𝝈𝑪𝑪𝑪𝑪 (dB) 
LOS PLCI 1.9 32.4+20log10 f 6.04 

FSPL 2.0 32.4+20log10 f 6.21 
M.2412 2.1 32.4+20log10 f 6.86 

 α β (dB) γ 𝑋𝑋𝜎𝜎𝐼𝐼𝐴𝐴𝐴𝐴  (dB) 
NLOS PLABG 4.34 -4.1 2.52 6.19 

M.2412 3.53 22.4 2.13 9.22 

Tx omni-directional antenna
at 158-GHz band

Rx cassegrain antenna and 
rotator at 158-GHz band

Rx cassegrain antenna and 
rotator at 300-GHz band

Tx omni-directional antenna
at 300-GHz band

Tx

Approx. 150 m

Rx

Approx. 135 m

Approx.
110 m

Approx. 82 m

Approx. 
20 m

Approx.
90 m

Approx.
122 m

Approx. 
15 m Approx. 

45 m Approx. 
80 m

Approx. 34 m

Approx.
70 m

Approx.
80 m

Approx.
45 m

Approx.
20 m
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(a) LOS (b) NLOS 

Fig.  II-17. measurement results [7] 

 
II-1.4.5.  Conclusion 

Path loss characteristics were investigated from microwave to sub-THz bands in urban 
environment. In the basic outdoor path loss, the results indicate that since the direct 
wave in the LOS environment was dominant, the PLE for the CI model is equivalent to 
FSPL and M.2412. From results for NLOS, the PLE and frequency dependency were 
more significant than M.2412 due to larger diffraction and reflection loss. 

Measurement data at 2 GHz
× Measurement data at 26 GHz

Measurement data at 158 GHz
M.2412 at 2 GHz
M.2412 at 26 GHz
M.2412 at 158 GHz
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II-1.5.  Terahertz Band Building Penetration Loss Characteristics for Beyond 6G 

Minoru Inomata, Ryotaro Taniguchi, Motoharu Sasaki, 
Wataru Yamada, Yasushi Takatori 

NTT Corporation 
 

Abstract— As cellular networks move toward 6G, newly exploiting the centimeter 
wave (cm-wave) and sub-terahertz (THz) bands, the utilization of a combination of 
multiple frequency bands will be necessary for achieving extremely high-speed and 
reliable communications. However, the building penetration loss characteristics have 
not been sufficiently studied in terms of the frequency dependency from the cm-wave to 
sub-THz bands. We therefore investigated and modeled the building penetration loss 
characteristics and, as the measurement results indicated a more gradual frequency 
dependency than the conventional ITU-R model, we opted to build the penetration loss 
model based on single transmission paths with the lowest transmission loss through 
multi-layer standard glass. 
 
II-1.5.1.  Introduction 

The new spectra utilized for 6G are sub-terahertz (THz) bands above 100 GHz to 
enable extremely high-speed communication data rates exceeding 100 Gbps [1]. It is now 
possible to use a significantly wider frequency bandwidth than 5G. The ITU-R Working 
Party 5D (WP5D), which is responsible for the overall radio system aspects of 
International Mobile Telecommunications systems, has agreed on a new 
recommendation on the framework and overall objectives of the future development of 
IMT for 2030 and beyond and published a report on the technical feasibility in bands 
above 100 GHz [2]-[8]. Therefore, it is necessary to clarify the building penetration loss 
characteristics and to model those characteristics, which include the frequency 
dependency from the cm-wave to sub-THz bands for operating the combination of 
multiple frequency bands. In this study, aiming to exploit the new spectra for 6G, we 
investigate the building penetration loss characteristics and propose a model from the 
cm-wave to sub-THz bands. 

 
II-1.5.2.  Measurement set up 

The details of the measurement system setup for 2.2, 26.4, 97.5, and 158 GHz are 
summarized in Table.  II-4. Fig.  II-18 shows the measurement points. The Tx antenna 
was set on the roof of the building at a height of 2.24 m from the floor, and the Rx antenna 
was fixed to a trolley in various rooms at a height of 1.5 m from the floor. The building 
penetration loss was measured on routes A, B, C, and D on the 4th, 5th, and 6th floors 
with different incident angles. The azimuth incident angle of path is from 0 to 54.1 
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degrees and the elevation angle is from 1.5 to 13.1 degrees to obtain the additional loss 
due to the non-perpendicular incidence to the building facade. The distance from the Tx 
antenna to the building facade was about 29 m to minimize fading across the indoor 
measurement room, while between the Tx antenna and the building façade was the LOS 
environment. Also, to obtain the indoor distance attenuation, the indoor penetration 
depth was set to a maximum of 8 m with roughly 0.25-m intervals. The measurement 
building was composed of roughly 70% multi-layer standard glass and 30% concrete, 
which is a similar material composition to the low-loss model of the ITU-R M.2412 [3].  

 

  

Fig.  II-18. Measurement routes. 
 

Table.  II-4. Measurement system parameters. 
Frequency 2.2 GHz 26.4 GHz 97.5 GHz 158 GHz 
Signal CW CW CW CW 
Tx antenna Omni-directional 

antenna 
Omni-directional 
antenna 

Omni-directional 
antenna 

Omni-directional 
antenna 

Rx antenna Omni-directional 
antenna 

Cassegrain antenna Cassegrain antenna Cassegrain antenna 

Tx antenna height 2.24 m from the floor 2.24 m from the floor 2.24 m from the floor 2.24 m from the floor 
Rx antenna height 1.5 m from the floor 1.5 m from the floor 1.5 m from the floor 1.5 m from the floor 
Tx antenna gain 2.1 dBi 2.0 dBi 0 dBi 7.0 dBi 
Rx antenna gain 2.1 dBi 31.7 dBi 44.2 dBi 43.1 dBi 
Max. measurable path loss Approx. 151 dB Approx. 200 dB Approx. 198 dB Approx. 152 dB 

 
II-1.5.3.  Measurement results 
Typical building façades are composed of several materials. The measurement results 

in M.2412 model [3] can roughly be grouped into two categories: low building-penetration 
loss results for old buildings with standard glass, and high ones for modern buildings 
with infrared reflective glass. The proportion of measurement building composed of 
multi-layer standard glass was about 70%, and that of concrete was about 30%, and the 
material composite was similar to the low-loss model. Building penetration loss was 
calculated by sum of the building penetration loss through the external wall PLtw and 
the indoor loss dependent on the depth into the building PLin. PLtw consists of an 

Rx cassegrain
antenna at 158 GHz

Tx omni-directional 
antenna at 158 GHz ＜Top view＞

Route A

Route B

Route C

Route D

Max. 8 m Approx. 29 m

TxRx

・Azimuth and elevation angle with respect to normal 
to building face for each measurement route
-Route A at 6th floor：0° / 1.5°
-Route B at 6th floor：22.5° / 1.5°
-Route C at 6th floor：34.6° / 1.5°
-Route D at 6th floor：43.8° / 1.5°
-Route A at 5th floor：0° / 7.4°
-Route B at 5th floor：15.4° / 7.4°
-Route C at 5th floor：34.6° / 7.4°
-Route D at 5th floor：54.1° / 7.4°
-Route A at 4th floor：0° / 13.1°
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additional loss due to the non-perpendicular incidence and linear loss as a function of 
frequency. When the propagation is deeper into the indoor room, indoor loss PLin and 
variation due to the shadowing of the furniture can occur. From the Fig.  II-19, it was 
found that measurement loss due to the non-perpendicular incidence and indoor loss was 
equivalent to M.2412, but the measurement results were more gradually frequency-
dependent than M.2412.  Since the material loss tends to increase as the frequency 
becomes higher or permittivity becomes larger, the power of the transmission paths 
through concrete is significantly lower in bands above 100 GHz. Thus, it was assumed 
that the transmission paths through the glass were dominant and that the M.2412 low-
loss model overestimated the building penetration loss due to the higher transmission 
loss of the concrete. In light of these findings, we designed an effective building 
penetration loss model based on single transmission paths with the lowest transmission 
loss through standard glass. The components of the proposed model are listed in Table.  
II-5. From the Table.  II-6, the RMSE value of the proposed model was about 6.2 dB at 
26.4 GHz, 3.4 dB at 97.5 GHz, and 11.6 dB at 158 GHz, which indicates an improvement 
over the M.2412 low-loss model for the 26.4–158 GHz bands. 
 

  
Fig.  II-19. Measurement frequency dependency of the building penetration loss. 

 
Table.  II-5. Measurement system parameters. 

 Path loss through external wall: PLtw (dB) 

M.2412 5 − 10 log10(0.3 ∙ 10−𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 10⁄ + 0.7 ∙ 10−𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 10⁄ ) 

Prop. 4.58 + 𝑃𝑃𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔 

 Material loss: Lglass (dB) Indoor loss: PLin (dB) 

M.2412 2 + 0.2𝑓𝑓 0.5 

Prop. 2.58 + 0.15𝑓𝑓 0.28 
 

Measurement data Prediction results PLtw + PLin using M.2412 model×
Prediction results PLtw using M.2412 model
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Table.  II-6. RMSE value for each frequency band. 

 2.2 GHz 26.4 GHz 97.5 GHz 158 GHz 
M.2412 6.4 dB 12.3 dB 9.4 dB 15.7 dB 
Prop. 6.2 dB 6.1 dB 6.0 dB 4.1 dB 

 
II-1.5.4.  Conclusion 
This paper introduced a measurement of the building penetration loss conducted from 

cm-wave to sub-THz bands. We investigated the building penetration loss characteristics 
on the basis of the measurement results and found that the results in the sub-terahertz 
bands were more gradually frequency-dependent than those of the conventional model. 
Therefore, we designed a building penetration loss model based on single transmission 
paths with the lowest transmission loss through multi-layer standard glass. We also 
confirmed the validity of the proposed model from the cm-wave to sub-THz bands. 
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II-1.6.  Millimeter-Wave Urban Cellular Channel Characterization and High-Precision 
Site-Specific Simulation 

Minseok Kim 
Niigata University 

 
Abstract—This article proposed a site-specific channel modeling framework for 

millimeter-wave (mmWave) communication systems, leveraging the 3GPP map-based 
hybrid approach to enhance simulation accuracy. To improve prediction accuracy, an 
exponential decay model was introduced for non-line-of-sight (NLOS) cluster power-
delay characteristics, addressing overestimation issues in deterministic models. 
Validation using the in-house channel model simulator (CPSQDSIM) demonstrated 
superior accuracy over the existing 3GPP map-based model. These results contribute to 
more precise mm-wave channel modeling for next-generation wireless networks. 

 
II-1.6.1.  Introduction 

With 50 billion connected devices projected by 2030, increasing communication 
demand leads to spectrum congestion, efficiency degradation, and interference. To 
support high data rates and low latency, millimeter-wave (mmWave) bands (24–71 GHz) 
offer high bandwidth but suffer from high propagation loss, obstacle sensitivity, and 
scattering effects. Accurate channel modeling is crucial for overcoming the limitations of 
existing models in mm-wave bands. Stochastic models (e.g., 3GPP, WINNER, 
COST2100) are easy to implement but lack site-specific precision. Deterministic models 
(e.g., ray tracing) provide environment-specific predictions but are computationally 
intensive. Hybrid models (e.g., QuaDRiGa, 3GPP map-based, Q-D model) balance 
accuracy and efficiency, integrating deterministic and stochastic components. However, 
modeling diffuse scattering effects remains a key challenge. 

This work proposes a novel calibration method using an exponential decay model for 
power delay characteristics of non-line-of-sight (NLoS) clusters. This approach enhances 
deterministic modeling accuracy by integrating diffuse scattering effects without 
requiring complex material-specific setups, making it more feasible for large-scale 
propagation environments. Before deploying new wireless communication systems, it is 
crucial to analyze site-specific propagation behaviors and assess system-level 
performance. However, large-scale real-world testing is time-consuming, costly, and 
lacks reproducibility due to environmental variations. Therefore, high-precision radio 
wave simulation tools are essential for efficient system evaluation, optimization, and 
scenario-based testing. This study introduces a mmWave hybrid channel model with 
site-specific channel representation (SSCR), utilizing geometric data such as 2D maps 
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and 3D CAD models to improve channel simulation accuracy for next-generation 
wireless networks [1]. 

 
II-1.6.2.  Site-Specific Channel Modeling Methodology 

This paper presents a quasi-deterministic (Q-D) channel model for site-specific 
channel representation (SSCR), as illustrated in Fig.  II-20. The proposed model follows a 
three-step process: (Step 1) dominant paths are generated deterministically using 
simplified ray tracing, (Step 2) random cluster centroids are stochastically generated to 
capture site-specific inter-cluster properties (LSPs), and (Step 3) power spread is applied 
stochastically to define the complete cluster shape, ensuring accurate representation of 
site-specific intra-cluster properties (SSPs). The approach ensures site-specific 
propagation accuracy while maintaining spatial consistency, with deterministic clusters 
following geometry-based evolution and random clusters adhering to the 3GPP spatial 
consistency procedure. This study aims to develop a radio channel simulation technique 
for a cyber-physical system (CPS) wireless emulator, enabling high-precision site-specific 
radio propagation simulation. This significantly reduces the reliance on extensive field 
testing of wireless devices in real-world environments [3]. The proposed channel model is 
validated through measurement campaigns in two typical urban environments in 
Yokohama, Kanagawa, Japan: an urban macro (UMa) scenario around JR Kannai Station 
(Area 1) and an urban micro (UMi) scenario near Yokohama World Porters shopping mall 
(Area 2), as shown in Fig.  II-21. 

 
Fig.  II-20. Quasi-deterministic (Q-D) channel model. 

 
II-1.6.3.  MmWave Channel Sounding 

Fig.  II-22 illustrates the in-house 24/60 GHz dual-band D-D channel sounder, 
comprising dual-band RF heads and baseband (BB) processing units [4]. The RF heads 
incorporate COTS phased array transceivers (EVK02001 for 24 GHz and EVK06002 for 
60 GHz, SIVERS IMA) and feature four phased array antennas for a 90° azimuth sweep 
in four directions (−135°, −45°, +45°, and +135°). A dual 4×4 MIMO TDM scheme enables 
simultaneous measurement of 32 channels (16 per frequency band). The 60 GHz 
transceiver uses a 16-element ULA, while the 24 GHz transceiver employs a 2×8-element 
UPA, with HPBWs of 6° and 15°, respectively. Beam sweeping utilizes five beams at 24 
GHz and 11 Tx/12 Rx beams at 60 GHz, achieving a 360° azimuth sweep. EIRP is 32 
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dBm at 24 GHz and 41 dBm at 60 GHz. Further details are available in previous works 
[4]. 

 

 
Fig.  II-21. Evaluation Models. 

 
Fig.  II-22. Channel sounder. 

 
II-1.6.4.  Extension of 3GPP Map-Based Model 

To improve prediction accuracy, this study extends the 3GPP map-based hybrid 
channel model, which integrates deterministic and stochastic components to enhance 
site-specific channel modeling. The 3GPP model, widely used for 5G RAT evaluations, has 
evolved to incorporate 3D extensions, frequencies above 6 GHz, and spatial consistency 
procedures. Ensuring compatibility with the 3GPP framework is essential for developing 
new channel models. The 3GPP map-based model supports frequencies from 0.5 to 100 
GHz across eight typical scenarios, including urban microcell (UMi) and urban macrocell 
(UMa). The methodology follows a 13-step process, including environment setup, 
deterministic cluster generation via ray tracing, random cluster modeling, and channel 
transfer function computation. While this study largely follows these steps for 
compatibility, modifications are introduced to generate a clustered multipath component 
(MPC) dataset (PathGridData) for use in the CPS wireless channel emulator [3]. The 
recipe for reflecting site-specific characteristics is as follows: 1) Deterministic Cluster 
Calibration: To improve NLoS cluster modeling, this study integrates a power delay decay 
model into Step 3 of the 3GPP model, enabling statistical calibration of deterministic 
clusters generated by ray tracing. This step adjusts power values using the z-score of 
power deviations, ensuring better alignment with measured environments. 2) Site-
Specific Random Cluster Generation: Random clusters are generated following 3GPP 
procedures, but they incorporate site-specific large-scale (LSPs) and small-scale 
parameters (SSPs) derived from real measurement data, ensuring improved accuracy in 
the modeled propagation environment. 
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II-1.6.5.  Development and Validation of Channel Model Generator 
CPSQDSIM is a channel model simulator developed based on the proposed channel 

modeling framework, designed to generate a grid-wise clustered multipath component 
(MPC) dataset called PathGridData. As illustrated in Fig.  II-23, the simulator 
integrates deterministic cluster centroids obtained via ray tracing with site-specific 
statistical parameters (LSPs and SSPs) to generate random clusters. The PathGridData 
is then created following the proposed channel model recipe described above. CPSQDSIM 
supports user-defined site-specific LSPs/SSPs datasets, enabling accurate reproduction 
of radio wave propagation characteristics for a given environment, enhancing the 
precision of site-specific channel modeling. 

 

II-1.6.6.  Conclusion 
This work proposed a Q-D channel model framework for high-precision site-specific 

simulations at 24 GHz and 60 GHz. Measurement campaigns revealed significant NLoS 
power loss, especially at 60 GHz, leading to the development of an exponential decay 
model for improved accuracy. The framework integrates calibrated ray tracing, site-
specific LSPs/SSPs, and 3GPP spatial consistency. The CPSQDSIM simulator generates 
grid-wise PathGridData, ensuring efficient radio wave modeling. Validation showed 
significant accuracy improvements over the 3GPP map-based model. 

 

 
Fig.  II-23. Functional Block diagrams of PathGridData generator (CPSQDSIM). 
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II-1.7.  THz Channel Characterization and Modeling Towards 6G Networks 

Minseok Kim 
Niigata University 

 
Abstract— With the growing demand for extreme data rates and ultra-reliable low-

latency communication (URLLC), the terahertz (THz) band (>100 GHz) has garnered 
significant attention. This article provides an overview of an in-house THz channel 
sounder and a measurement campaign conducted at 300 GHz in a typical indoor 
environment, such as a conference room. The developed system and measurement 
results offer new insights into THz channel propagation, contributing to the development 
and evaluation of mobile applications for future Beyond-5G (B5G) and 6G networks. 

 
II-1.7.1.  Introduction 

With the exponential growth of smart devices and doubling data rate demand every 18 months, the 
terahertz (THz) band (0.1–1 THz) emerges as a promising candidate to bridge the gap between 
millimeter-wave (mmWave) and optical frequencies. While mmWave can only partially meet the 
growing demand with advanced modulation and hardware, it falls short for ultra-high-speed 
applications like Tera-WiFi, Tera-IoT, Tera-backhaul, space communications, and nano-networks. 
Conversely, free-space optical (FSO) communication offers extreme data rates but suffers from 
environmental interference, background noise, and beam tracking challenges. The THz band provides 
a middle-ground solution, leveraging wide bandwidth and improved propagation characteristics. 

Wireless communication relies on channel properties, which influence signal propagation more than 
transmission techniques or hardware. THz channel modeling requires extensive measurement 
campaigns using channel-sounding techniques to analyze signal modifications by the propagation 
medium. Extracting key channel parameters enables the development of accurate models, ensuring 
efficient spectrum utilization and unlocking the full potential of THz communications. While 
mmWave channels have been extensively studied through surveys on measurements, propagation, 
modeling, and future directions, these techniques cannot be directly extended to the THz band due to 
hardware constraints and unique propagation effects such as scattering from surface roughness and 
molecular absorption. Additionally, THz wavelengths enable large-scale antenna arrays, enhancing 
capacity but increasing modeling complexity due to non-stationarity across spatial, temporal, and 
frequency domains. 

 

II-1.7.2.  Sub-THz Channel sounder development 
A 154/300 GHz dual-band channel sounder was developed based on a previous study 

[5] to facilitate high-precision THz channel measurements. The system parameters are 
summarized in Table.  II-7. The transmitter generates two intermediate frequency (IF) 
signals at 8 GHz using an arbitrary waveform generator (AWG, M8195A, Keysight) 
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operating at 64 GSa/s, along with a signal generator (SG). A local oscillator (LO) signal 
at 24.33 GHz is produced by the SG and upconverted using WR6.5 CCU and WR3.4 CCU 
(VDI Corporation), with multiplication factors of 6 and 12, resulting in signals in the 154 
GHz and 300 GHz bands, respectively. The upconverted signals are filtered using band-
pass filters (BPF) to eliminate image frequencies, amplified by power amplifiers (PA), 
and transmitted via a probe antenna. At the receiver, the transmitted signals are 
captured using a horn antenna and down-converted via WR6.5 CCD (154 GHz) and 
WR3.4 CCD (300 GHz) downconverters (VDI Corporation). The down-converted IF 
signals are subsequently amplified using low-noise amplifiers (LNA) and digitized by a 
high-speed digitizer (M8131A, Keysight) for further processing. 

To enable precise time-delay resolution, multi-tone sounding signals were utilized 
with 4 GHz and 8 GHz bandwidths for the 154 GHz and 300 GHz bands, respectively. 
This configuration provided delay resolutions of 250 and 125 ps, while maintaining a 640 
ns delay span. Due to propagation loss and the equivalent isotropic radiated power 
(EIRP) limit, the signal-to-noise ratio (SNR) of the received signal was significantly 
degraded, limiting the measurement range. To mitigate this, coherent averaging was 
employed across multiple symbol durations, effectively enhancing SNR and extending 
the effective measurement range. 
 

 
Fig.  II-24. 154/300 GHz dual-band channel sounder. 
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Table.  II-7. Channel Sounder Specification 
 150 GHz band 300 GHz band 

Center freq. 154 GHz 300 GHz 
Signal BW 4 GHz 8 GHz 

Sounding signal 2,560 tones 5,120 tones 
Delay resolution 250 ns 125 ps 

Delay span 640 ns 
Tx Ant Gain: 26 dBi, HPBW: 9° Rx Ant 
EIRP 21.5 dBm 16.5 dBm 

Dynamic range 
62 dB@1m 

42 dB@10m 
22 dB@100m 

60 dB@1m 
40 dB@10m 
20 B@100m 

 
II-1.7.3.  Measurement Campaigns and Results 
Measurement campaigns were conducted in various indoor environments, including a 

conference room, office, and corridor, at 300 GHz [3][4]. As an example, Fig.  II-25 
illustrates the conference room measurement setup, where the receiver (Rx) antenna was 
positioned at 1.15 m, representing a mobile phone or laptop, while the transmitter (Tx) 
antenna was fixed at approximately 2.1 m, simulating an access point. A full azimuth 
scan was performed for all Rx positions, with the Tx rotating 180° along the azimuth 
plane. The measurement results, shown in Fig.  II-26, provide insights into THz signal 
propagation by comparing the 300 GHz campaign with a previous 60 GHz campaign 
under a similar setup. The findings reveal that dominant clusters appear in both 
frequency bands, but at 300 GHz, the propagation is more LoS-dominant, exhibiting fewer 
multipath components (MPCs) due to higher loss compared to 60 GHz.  
 

II-1.7.4.  Conclusion 
This work presents an in-house 154/300 GHz dual-band channel sounder, and a 

measurement campaign conducted in a medium-sized conference room. Due to the high 
bandwidth, clusters in the PDP exhibit impulse-like characteristics, enabling manual 
extraction based on PDP and ADPS analysis. The results were compared with those from 
a previous 60 GHz campaign in the same environment, revealing that dominant clusters 
appeared in both bands. A comparison of large-scale parameters (LSPs) confirmed that 
300 GHz propagation is more LoS-dominant, with fewer significant multipath reflections 
due to higher propagation loss. The evaluated LSPs were further validated against 
existing literature, demonstrating good agreement. 
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Fig.  II-25. Conference room measurement setup. 

 

 
Fig.  II-26. Power delay profiles (left) and azimuth delay power spectra (right) 

obtained at 300 and 60 GHz. 
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II-2.  Simulation 

II-2.1.  Fast Propagation Simulation by CI Method for CPS Realization 

Takahiro Tomie, Satoshi Suyama, Koshiro Kitao, Nobuaki Kuno  
NTT DOCOMO, INC. 

 
Abstract— In order to maximize the performance of 6G systems using dynamic control 

by cyber-physical system (CPS), a technology for estimating and predicting radio 
propagation characteristics in real time with high accuracy is required. To realize the 
technology, we focused on the outdoor environment and proposed the color images 
method (CIM). In this article, we compare estimated path loss results of an outdoor 
urban environment using the CIM with the measured results in high frequency bands of 
sub-6 GHz band and millimeter-wave to clarify the estimation performance of the CIM. 
The root mean squared errors (RMSEs) of the difference between the estimated results 
and the measured results are small about 8 dB for all frequencies. The calculation time 
is extremely short. 

 
II-2.1.1.  Introduction 

Currently, research and development of realization of the 6th generation mobile 
communication system (6G) are carried out intensively by many organizations around 
the world [1], [2]. The requirements for 6G are extremely high such as a peak data rate 
of more than 100 Gbps, end-to-end latency of less than 1 ms, more than 10 million devices 
per square km for connecting, etc. In order to maximize the performance of 6G systems 
using dynamic control by cyber-physical system (CPS), a technology for estimating and 
predicting radio propagation characteristics in real time with high accuracy is required. 
This method also needs to be suitable for site-specific environments. Although there are 
several conventional estimation methods for specific environment such as ray tracing 
method (RTM) [3], [4], method based on deep learning [5]-[7], etc., these methods still do 
not satisfy the requirements of short calculation time and high accuracy. Hence, we 
proposed a new method named color images method (CIM) and clarified its high 
performance in an outdoor urban environment at low frequency band of 1 GHz [8]-[10]. 
However, the performance in high frequency bands has not been clarified. In this work, 
we estimated path loss results of an outdoor urban environment using the CIM and 
compared with the measured results in high frequency bands of sub-6 GHz band and 
millimeter-wave to clarify the estimation accuracy and calculation time of the CIM [11]. 
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II-2.1.2.  Evaluation Methods 
II-2.1.2.1.  Measured Data 
For evaluating estimation accuracy of the CIM in high frequency bands, a 

measurement path loss data set of the outdoor environment in [12] is used. Fig.  II-27 
shows the Tx position, measurement courses and measurement conditions. The 
evaluation area is about 1 km2. The Tx was set on the roof top of a building with 25 m 
height from the ground. The average height of the buildings in this area was about 20 
m. The Rx was set on the roof top of a measurement car with 2.5 m height from the 
ground. The Rx was moved on the measurement courses to measure path loss at 
frequencies of 2.2, 4.7, 26.4, 66.5 GHz. After measurement, the median path loss at 10 
m length was processed and thinned to a total of 1472 points. For the case of 66.5 GHz, 
only 392 points were used due to the limited range of the measurement equipment. 

 

 
Fig.  II-27. Position of the Tx and the measurement courses. 

 
II-2.1.2.2.  CIM 
In this section, we describe a brief overview of the CIM proposed in [8] and its 

calculation conditions. The CIM is a simplified method for calculating scattering of 
building walls. Specifically, to find the scattering walls and calculate the scattered power, 
different RGB colors are assigned to walls of all buildings in the evaluation area, and 
two types of color images of the walls which are viewed from the positions of Txs and Rxs 
respectively, are created as shown in Fig.  II-28. Here, the number of colors corresponds 
to the number of walls of all buildings. These images have view range of -90 degrees to 
+90 degrees in elevation, and -180 degrees to +180 degrees in azimuth. In these images, 
the number of pixels of each color corresponds with the visible area of each wall and 
depends on the distance and viewed angle from viewpoint (Tx or Rx) to the wall. Next, 
the scattering walls are detected by the corresponding colors which existed in both the 
Tx’s image and Rx’s image. By counting the number of pixels of these colors and 
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multiplying with coefficients, the total received power 𝑃𝑃R at each position of the Rx can 
be expressed as below: 

𝑃𝑃R = ∑ 𝑘𝑘 ∙ 𝐶𝐶(𝑖𝑖) ∙ 𝑁𝑁P,T(𝑖𝑖) ∙ 𝑁𝑁P,R(𝑖𝑖)𝐷𝐷                                          (1) 

Where 𝑁𝑁P,T(𝑖𝑖) ,  𝑁𝑁P,R(𝑖𝑖)  are numbers of pixels of the colors corresponding with the 
scattering wall #i in Tx’s image and Rx’s image, respectively. The #i can be 
representative for the index of path i. 𝐶𝐶(𝑖𝑖) is a coefficient related to the transmitting 
power and the gains of the Tx antenna and Rx antenna. The coefficient k depends on 
materials of the walls, the frequency and size of image. In calculation, the coefficient k 
is defined as below: 

10 ∙ 𝑙𝑙𝑐𝑐𝑙𝑙10𝑘𝑘 = −198− 20 ∙ 𝑙𝑙𝑐𝑐𝑙𝑙10, 𝑓𝑓[GHz]                                     (2) 

where f is the frequency with unit of GHz. In addition, the image size is 7200*3600 pixels. 
 

 
Fig.  II-28. The color images viewed from the Tx and the Rx 

 

 
Fig.  II-29. The area evaluating tool using the CIM 
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The CIM can be used for calculating not only one-bounce scattering path but also more 

than two-bounces scattering path. Moreover, the CIM can calculate not only received 
powers (pathloss) but also delays, and angles of multipath of outdoor environment. To 
achieve short calculation time, the CIM can be divided into pre-processing and post-
processing. The pre-processing includes creating and analyzing all Rx’s images and 
storing the analyzed results to a database (DB). The post-processing includes creating 
and analyzing the Tx’s image, matching the analyzed Tx’s image result with analyzed 
Rx’s image results, and calculating received power. Normally, pre-processing can be done 
in advance. Therefore, when radio propagation estimation is required, only post-
processing is needed to do resulting in very short calculation time. Fig.  II-29 shows the 
area evaluating tool using the CIM. The tool includes height above sea level data, 
building data, and road data as a database (DB). In addition, in order to perform 
calculations over a wide area with short calculation time, receiver points (Rxs) are 
located at certain intervals on roads, and images viewed from these Rxs are created and 
analyzed, then stored in the DB (pre-processing) in advanced. In addition, parallel 
processing on a computer is also utilized. 

 
II-2.1.3.  Performance Evaluation 

Fig.  II-30 shows the comparisons of estimated path loss results of the CIM with the 
measured results for course C1. It is found that estimated results of the CIM are matched 
with the measured results at all frequencies, especially at frequencies of 2.2, 4.7 GHz. 
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Fig.  II-31 shows that, for each course, the RMSE has the nearly same trend with 
respect to frequency. The course C1 has the smaller RMSEs than the other courses 
except when the frequency is 66.5 GHz. For all courses, the RMSEs are 7.8, 7.7, 8.4, 7.5 
dB at 2.2, 4.7, 26.4, 66.5 GHz, respectively. These values are nearly the same as the 
RMSE of the different urban outdoor environments in [8]-[10]. It means that the RMSE 
is independent of frequency and about 8 dB for all frequencies. Hence, the CIM has high 
estimation accuracy. The reasons for small values of RMSE of the CIM are that the CIM 
calculates received power based on scattering (arbitrary directional reflection) and 
scattering power is proportional with visible areas (numbers of pixels) of scatting walls 
viewed from the Tx and Rx. These are considered to match the real environment with 
buildings which have roughness and complex structures of walls resulting in scattering 
radio waves to arbitrary direction. 

 

Fig.  II-30. Comparison results for course C1 
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Fig.  II-31. RMSE of difference of estimated results and measured results 

 
About calculation time, the pre-processing and post-processing time were very short 

with 132 seconds and 8 seconds, respectively. In general, for the case of using ray tracing 
method to evaluate this area, the calculation time is more than several hours. Hence, 
the CIM has very short calculation time. 

 
II-2.1.4.  Conclusion 

In this work, we estimated path loss results of an outdoor urban environment using 
the CIM and compared with the measured results in high frequency bands of sub-6 GHz 
band and millimeter-wave. It is found that the RMSEs of estimated errors are 
independent of frequency and are small, about 8 dB for all frequencies. The calculation 
time is very short with 8 seconds of post-processing. It means than the CIM has short 
calculation time and high accuracy in estimating radio propagation characteristics for 
sub-6 GHz band and millimeter-wave. In future work, we plan to consider using GPU 
technologies for real-time estimation of radio propagation characteristics. 
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II-2.2.  AI-Based Radio Propagation Modeling and Data Augmentation 

Tatsuya Nagao, Takahiro Hayashi 
KDDI Research, Inc. 

Abstract— Traditional statistical propagation models based on regression models 
using simple environmental parameters such as the distance between the transmitter 
and receiver and actual measurement data are widely used. However, this method does 
not reflect site-specific environmental information in the model, and the prediction 
accuracy of propagation characteristics for each location is insufficient. Therefore, in 
recent years, various studies have been conducted on propagation modeling using AI 
with map data around the Tx and Rx points, and it has been shown that site-specific and 
highly accurate estimation can be achieved. However, in general, to construct a highly 
accurate model using AI (especially supervised machine learning), a large amount of 
measurement data is required for training. Therefore, in this article, we describe a 
frequency extension method using fine tuning and a data extension method using 
generative AI. 

 
II-2.2.1.  Introduction 

For the purpose of constructing a site-specific and highly accurate radio propagation 
model, AI-based modeling methods using map data around the Tx and Rx points are 
being developed [1-4]. This approach uses machine learning techniques such as image 
recognition to directly consider the propagation environment, which was difficult to 
express using traditional statistical models, and to extract features from 
multidimensional input data, and then models the propagation characteristics by adding 
site-specific environmental information using learning with actual measurement data as 
the objective variable, as shown in Fig.  II-32. 

In addition to AI-based methods, the accumulation of measurement data under various 
conditions is an important practical issue, as is the modeling method itself, when it 
comes to understanding and modeling radio propagation characteristics. In general, the 
measurement of radio propagation characteristics requires a great effort in terms of 
resources, including the construction of measurement systems and experimental 
environments, and data processing, so there is a growing trend towards the opening up 
of these measurement data [5]. The US National Telecommunications and Information 
Administration (NTIA) has published long-term, long-distance propagation 
measurement data. In ITU-R SG3 (Study Group 3), as part of the study of radio 
propagation for the improvement of wireless communication systems, a database called 
DBSG3 is maintained, and it is possible to register data to the database in the form of 
contributed documents from ITU member organizations. The IEEE provides a service 
called IEEE DataPort, which contains measurement data from various scenarios, 
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including valuable data, such as that measured on ships and in agricultural areas. In 
Japan, the Propagation Database Committee, which is under the Technical Committee 
on Antennas and Propagation of the Institute of Electronics, Information and 
Communication Engineers (IEICE), is leading the provision of a propagation database 
and is also holding competitions. 

Thus, towards the further activation of research and development related to radio 
propagation, efforts are being made to share valuable propagation data, but both the 
quality and quantity of data are important for improving the accuracy and generality of 
propagation models. In particular, AI-based modeling methods generally require a large 
number of training data. Therefore, in the following, we will introduce two approaches 
to this issue in AI-based propagation modeling. One is the fine tuning of models with 
fewer data, and the other is data augmentation using generative AI. 
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Fig.  II-32. Overview of AI-based radio propagation modeling 

 

 
Fig.  II-33. Frequency extension method of radio propagation model using fine tuning 
 

II-2.2.2.  Frequency Extension of Radio Propagation Model Using Fine Tuning 
As mentioned above, to construct a highly accurate propagation model with AI, a large 

amount of training data is required. For example, in mobile networks such as 4G and 
5G, data collection using system logs and other methods is possible for the frequencies 
in operation. However, when introducing new frequencies, the data that can be obtained 
may be severely limited. 

This section describes the frequency extension method for propagation models using 
fine tuning proposed by the authors [6]. An overview of the proposed method is shown in 
Fig.  II-33. This method applies fine tuning, a type of transfer learning, to construct a 
model with less accuracy degradation even when there are only a few training data for a 
new frequency 𝑓𝑓𝑡𝑡, based on a high-precision propagation model constructed by frequency 
𝑓𝑓𝑔𝑔. 
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In deep learning, the initial values of the weights to be learned are usually set 
randomly, and a high-precision model can be constructed by minimizing the error 
between the training data (i.e. the ground truth) and the output values, which is 
expressed by the loss function, by optimizing the weights. The weights learned in this 
way are parameters that express the relationship between environmental information 
and propagation characteristics. 

In the proposed method, the pre-trained weights are used as initial weights, and the 
weights are retrained using new frequency training data. This means that only the 
differences in the propagation characteristics due to the differences in frequency have to 
be trained, so even with a small amount of training data, the accuracy degradation is 
small, and a new frequency model can be constructed efficiently. This means that only 
the differences in propagation characteristics due to the differences between frequencies 
𝑓𝑓𝑔𝑔 and 𝑓𝑓𝑡𝑡 need to be trained, so even with a small number of training data, the accuracy 
degradation can be kept to a minimum, and a new frequency model can be constructed 
efficiently. 

The evaluation result of the proposed method in the 2.1 GHz path loss model is shown 
in Fig.  II-34. The conventional method is the result of training with random initial 
weights without pre-training. The proposed method is the result of fine-tuning the 
weights pre-trained using approximately 80,000 points of 800 MHz training data as the 
initial weights. The horizontal axis shows the number of training data used to construct 
the 2.1 GHz model, and the vertical axis shows the RMSE. As you can see from the figure, 
the RMSE degrades by approximately 5 dB when the number of training data is about 
700 points in the conventional method, whereas the proposed method is able to suppress 
the degradation to approximately 2 dB. This is equivalent to the accuracy when using 
approximately 7,700 points of training data in the conventional method. 
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Fig.  II-34. Evaluation result of prediction at 2.1 GHz 

 
II-2.2.3.  Generative AI-Based Data Augmentation for Radio Propagation Modeling 

In this section, we will discuss another approach to improving the accuracy and 
generality of propagation models: the data augmentation method using generative AI [7]. 
As mentioned above, although efforts are being made to open up propagation data, it is 
also essential to expand environmental data for the construction of site-specific 
propagation models. However, acquiring 3D models of actual cities often requires costs, 
and in some cases, it is difficult to obtain sufficient data. Therefore, by using the 
Denoising Diffusion Implicit Model (DDIM), which is an image generation model, to 
generate a 2D map of building placement, and by assigning a building height to each 
building based on the distribution of building heights relative to the building area 
extracted from the actual 3D model of the city, it is possible to generate a fictional 3D 
model. By using this 3D model to perform ray tracing and other propagation simulations, 
it is expected that the training data can be augmented, and that this will contribute to 
improving the generalizability of the propagation model. 

 
II-2.2.4.  Conclusion 

In this article, we introduced the opening up of actual measurement data on radio 
propagation characteristics, and we also focused on the issue of the availability of 
training data on AI-based radio propagation modeling technology and introduced two 
approaches: frequency expansion through fine-tuning and augmentation of 3D city 
models through generative AI. We expect that these approaches will contribute to 
improving the accuracy and generalization performance of propagation models, both by 
expanding the actual measurement data and by researching and developing more 
efficient modeling techniques. 
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Cloud Data 
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Abstract—In this article, a machine learning model that uses point cloud data to 
improve the expressiveness of environmental information in propagation loss estimation 
was proposed. Conventional methods using CNN for 2D matrix data have the problem 
of insufficient representation of environments with complex structures. In this proposed 
model, environmental parameters that extract features from 3D data of buildings and 
structures are combined with system parameters such as the distance between the 
transmitter and receiver, and the features are learned using PointNet to estimate 
propagation loss. The evaluation was carried out using an outdoor bridge environment 
(measured data in the 2.4 GHz band) and a virtual indoor environment (simulation data 
using ray tracing). The results confirmed that feature extraction using PointNet is 
effective. In particular, in indoor environments, an estimation was possible that took 
into account the effects of blocking, diffraction and transmission loss. This method allows 
propagation loss to be estimated using a machine learning model in environments with 
complex structures that were difficult to express using CNN, and contributes to the 
construction of a highly accurate radio wave propagation model. 

 
II-2.3.1.  Introduction 

The application of machine learning to propagation loss estimation models has been 
investigated in various ways [1]. In particular, for propagation models assuming 
microcells and macrocells for land mobile communications, a propagation loss estimation 
model in which environmental information such as buildings and terrain is pre-
processed into two-dimensional matrix data as feature quantities, and feature extraction 
using CNN and regression using FNN is widely used and achieves high accuracy. In the 
pre-processed matrix data, the array positions correspond to the coordinates of the real 
environment, and the values represent the environment, such as the height and altitude 
of buildings present at these coordinates. On the other hand, when the propagation 
environment contains complex structures and it is considered necessary to consider their 
influence on propagation, the representation is considered to be insufficient. Therefore, 
we investigated whether expressiveness (representation of the environment) could be 
improved by using point cloud data for environmental information. In this paper, a study 
using measured data from a propagation environment around a bridge as an outdoor 
environment [2] and a study using sampled data from a virtual environment assuming 
an indoor environment [3] was conducted. 
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II-2.3.2.  Proposed Model 

It is important to understand what propagation paths exist between the transmitter 
(Tx) and receiver (Rx) positions and to obtain the characteristics of the propagation paths 
that affect the propagation loss in that environment. A method of building a machine 
learning model that combines two parameters has been proposed [4]. One is 
environmental parameters whose features are extracted from 3D data of buildings and 
structures. The other is system parameters, such as Tx and Rx distance, frequency, and 
the presence or absence of line-of-sight (LoS), which is information that depends on the 
communication system and scenario. The propagation loss estimation model proposed in 
this study is shown in Fig.  II-35. The feature extraction section uses PointNet [5], which 
can extract features from point cloud data. 

The input information is environmental information in the form of 3D data of buildings 
and structures, and system parameters, which are the distance between the Tx and Rx. 
In this paper, sampled point cloud data is generated from the environmental information 
as a pre-processing step. N-dimensional point cloud data is generated from the system 
parameter information and sampled point cloud data, and features are extracted using 
PointNet, a machine learning method that uses point cloud data. From this, 
environmental parameters are generated, and the propagation loss is calculated by 
combining them with the system parameters. 

 
Fig.  II-35. Proposed propagation loss estimation model. 

 
Here we will explain about N-dimensional point cloud data. The point cloud data input 

to PointNet can be treated as N-dimensional data, which includes not only the coordinate 
values, but also the information that each point cloud data has due to the characteristics 
of the point cloud. We call this N-dimensional point cloud data (Fig.  II-36). 

Firstly, the point cloud data is three-dimensional coordinate data [𝑥𝑥, 𝑦𝑦, 𝑧𝑧] that indicates 
the position of a structure in each coordinate system. Five-dimensional point cloud data 
is created by adding the point cloud coordinates and the distances from the Tx and Rx 
points [𝑑𝑑𝑡𝑡𝑡𝑡,𝑑𝑑𝑡𝑡𝑡𝑡] to this three dimensional data. By adding two distance data the data 
becomes five dimensional [𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑑𝑑𝑡𝑡𝑡𝑡 ,𝑑𝑑𝑡𝑡𝑡𝑡]. These two distance data were designed based 
on the results of the combination of the BS (base station or Tx) distance map and the MS 
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(mobile station or Rx) distance map proposed in the literature [4], which showed 
improved accuracy. 

By adding the normal vector of the plane to which each point belongs, it becomes an 8 
dimensional data �𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑛𝑛𝑡𝑡 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧,𝑑𝑑𝑡𝑡𝑡𝑡,𝑑𝑑𝑡𝑡𝑡𝑡�, designed for indoor study and added so that 
points can recognize floors, ceilings, walls dividing rooms, etc.  

 
Fig.  II-36. Example of N-dimensional point cloud data. 

Next, we will explain the input data to PointNet generated by the environmental 
information conversion unit The N-dimensional point cloud data that is input to 
PointNet is a point cloud data with 3D coordinate information, such as point cloud data 
created by scanning an object. PointNet acquires features such as the positional 
relationship of the object that is the basis of the input data through learning, and is good 
at classifying and segmenting the object. In this study, we want to acquire features from 
the surrounding environmental information for one combination of Tx and Rx points and 
estimate its propagation loss value. Therefore, instead of an object, point cloud data 
around the Tx and Rx points is prepared and input to PointNet. In this study, the 
extraction target was point cloud data within a sphere centered on the Tx and Rx points 
and within a cylinder with the LoS of the Tx and Rx points as its center line (Fig.  II-37). 

 
Fig.  II-37. Example of input point cloud data (gray points: environment information, 

light blue points: extracted points) 
 

II-2.3.3.  Experiments 
The performance of the proposed model was verified in the outdoor and indoor 

environments shown in Fig.  II-38. 
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Fig.  II-38. Verification environment (left: outdoor bridge environment. right: virtual 

indoor environment) 
 
II-2.3.3.1.  Outdoor Environment 
Model training and evaluation was performed using the 2.4 GHz propagation loss 

values measured in the bridge environment shown on the left in Fig.  II-38. The 
measured data were randomly split 7:3 and used for training and evaluation. The 
evaluation results are shown on the left-hand side of Fig.  II-39, with an RMSE of 3.18 
dB. The horizontal axis is the propagation loss value of the measured data and the 
vertical axis is the estimated value, with the light grey area indicating an error of 3 dB 
or less and the dark grey area indicating an error of 5 dB or less. It has been suggested 
that the model works as a propagation loss estimation model even when PointNet is used 
in the feature extraction section. However, as the validation was performed by splitting 
a single measurement dataset, validation of the generalization performance on different 
bridges is a future challenge. 

 
II-2.3.3.2.  Indoor Environment 
A virtual indoor environment with multiple rooms and fixtures is prepared, as shown 

on the right side of Fig.  II-38, and a dataset of ray tracing results is constructed at a 
frequency of 2.4 GHz. The indoor environment data used for learning and evaluation was 
divided per building, and an estimation of the area encompassing the buildings was 
performed, with an RMSE of 7.83 dB. An example of the evaluation results is shown on 
the right side of Fig.  II-39. The solid lines indicate the exterior walls separating the 
indoor and outdoor areas, the black dotted lines indicate the interior walls, and the red 
dotted lines indicate the location of the fixtures. Each point in the area was estimated 
using PointNet. The characteristics of ray tracing, such as blockage by interior walls, the 
effects of diffraction, and transmission loss, were reproduced. 
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Fig.  II-39. Verification results 

(left: Error plot for outdoor environment. right: Area map of buildings with indoor 
environment) 

 
II-2.3.4.  Conclusion 

This paper evaluates a machine learning model applying PointNet with point cloud 
data as input for outdoor and indoor environments, and confirms that point cloud data 
works as a means of extracting features of environmental information. We believe that 
this method can be used to apply machine learning models to environments with 
structures that are difficult to represent with CNNs, and will lead to the acquisition of 
highly accurate radio propagation estimation models. In the future, we plan to verify the 
generalization performance based on measurement data from various environments and 
study the feature set to improve the performance. 
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II-2.4.  Investigation of Automatic 3D model Construction Techniques of the 
Surrounding Environment for Ray Tracing 

Kento Sugiyama, Daisuke Hosokawa, Wataru Okamura, Gilbert Ching,  
Kenshi Horihata, Yukiko Kishiki  

KOZO KEIKAKU ENGINEERING, INC. 
Abstract — Ray tracing is a method of estimating propagation characteristics 

considering the surrounding environment, and a 3D model simulating the surrounding 
environment is necessary for its implementation. In this article, a method for 
automatically constructing a 3D model applicable to the ray tracing method from point 
cloud data of indoor and outdoor environments measured by a laser scanner etc. was 
investigated. In addition, a simplification method for 3D models of the outdoor 
environment was investigated to improve the calculation speed of the ray tracing method, 
and 3D models suitable for the ray tracing method were verified in terms of both 
calculation speed and accuracy. 

 
II-2.4.1.  Introduction 

Radio wave propagation simulation is useful for evaluating wireless communication 
systems. Ray tracing is one of the site-specific propagation estimation methods that can 
consider the surrounding environment, and its implementation requires a 3D model that 
simulates the surrounding environment. However, the task of manually creating 3D 
models using CAD software to evaluate each environment is time-consuming and is a 
bottleneck in the evaluation. 

In this study, a technology to automatically construct a 3D model with surface and line 
information applicable to the ray tracing method from point cloud data, which is a 
collection of coordinate information of structures in indoor and outdoor environments 
measured by laser scanners, etc. was investigated. In addition, a method to simplify the 
3D model for outdoor environments in order to improve the computational speed of the 
ray tracing method was investigated. By comparing the simulation results of the ray 
tracing method with measurement data, the results of verifying 3D models suitable for 
the ray tracing method in terms of both computational speed and accuracy are presented. 
[1]-[7]  

 
II-2.4.2.  3D Modeling from Indoor/Outdoor Point Cloud Data 

Fig.  II-40 shows the point cloud data of indoor and outdoor environments used to 
consider the 3D model configuration. For indoor environments, point cloud data of one 
floor of an office environment was acquired using portable and fixed laser scanners. For 
outdoor environments, point cloud data of an urban environment was acquired using 
aircraft and vehicle-mounted laser scanners. 
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Fig.  II-41 shows the 3D models automatically constructed from point cloud data in 

each environment. In the indoor environment, the height of the building's floor and 
ceiling, and the outlines of the walls and fixtures inside the building were obtained from 
the point cloud data, and the 3D model was constructed by combining polygonal prisms. 
In the outdoor environment, the height and outline of the ground and building were 
estimated from the point cloud data, and the 3D model was constructed by combining 
triangular meshes and polygonal prisms. By comparing the coordinate information of the 
original point cloud data and the constructed 3D model, it was confirmed that the error 
in constructing the 3D model was within 1m. In this way, it is possible to automatically 
construct a 3D model applicable to the ray tracing method with an accuracy of within 
1m from the point cloud data of the surrounding environment measured by a laser 
scanner. 

 

 
Fig.  II-40. Point cloud data. 

 

 
Fig.  II-41. 3D model automatically constructed from point cloud data. 
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Fig.  II-42 shows the results of applying this 3D model to the ray tracing simulation. 

The left figure shows the results of an area evaluation of the 2.4 GHz band in an indoor 
environment. It can be seen that the received power tends to fluctuate due to attenuation 
over distance, attenuation due to transmission through walls, and reflections from walls 
and surrounding fixtures. The right figure shows the results of an outdoor environment 
propagation evaluation of the 920 MHz band from a transmitter on the roof of a building 
to a receiver route along a road. Reflections and diffraction from the ground and 
buildings were confirmed, and it was confirmed that the trends generally matched those 
of actual measurements. In this way, it is possible to perform radio wave propagation 
simulations based on the ray tracing method using a 3D model automatically constructed 
from point cloud data. 

 

 
Fig.  II-42. Application to ray tracing method. 

 
II-2.4.3.  Simplification of Outdoor 3D Model for Acceleration of Ray Tracing Method 

When studying wireless communication systems in outdoor environments, it is 
expected that a wide range of studies will be required, which increases the amount of 
calculations for the ray tracing method. Therefore, we considered reducing the amount 
of calculations by simplifying the shape of the building 3D model as shown in Fig.  II-43, 
and verified the appropriate degree of simplification of the 3D model from the perspective 
of calculation amount, accuracy, etc. 

As shown in the figure on the right, it can be seen that the calculation speeds up the 
more the building 3D model is simplified. On the other hand, when the model was 
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simplified by 10 times the wavelength, the RMSE value for all routes compared to actual 
measurements was below 10 dB, indicating that using a more detailed 3D model does 
not necessarily result in more accurate results, and that it is better to simplify surfaces 
to a certain extent to be close to the size of the wavelength. Since the ray tracing method 
is an approximation method that uses geometric optics approximation, calculations are 
performed using Fresnel reflection and diffraction coefficients assuming an infinite 
surface. For this reason, it is not suitable to use a 3D model that expresses even fine 
uneven shapes with a large number of surface information, and a certain degree of 
simplification is necessary. 

 
Fig.  II-43. Simplification of 3D model. 

 
II-2.4.4.  Conclusion 

In this paper, a technology to automatically construct 3D models with surface and line 
information applicable to the ray tracing method from point cloud data of indoor and 
outdoor environments measured by laser scanners, etc. was investigated. We confirmed 
that the constructed indoor and outdoor 3D models can be applied to the ray tracing 
method, and for outdoor 3D models, we verified 3D model simplification to obtain faster 
and more accurate results. We believe that the use of this method will enable efficient 
preparation of a simulation environment for the ray tracing method. 
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II-2.5.  Radio Zone Interpolation by Kriging Method 

Motoharu Sasaki, Kenichi Kawamura, Minoru Inomata, 
 Ryoutarou Taniguchi, Wataru Yamada, Tomoaki Ogawa 

NTT Corporation 
Abstract—In this article, we propose an improved Kriging interpolation method that 

integrates the anisotropy of shadowing correlation based on base-station location. By 
transforming path-loss measurements into a distance and azimuth-angle plane, our 
method captures directional correlation variations, leading to more precise interpolation. 
Using 2.2-GHz urban path-loss data, we evaluate our approach on a dataset of 14,000 
measurement points, with interpolation from 10 and 100 sampled points. Compared with 
four conventional interpolation methods, our proposed method significantly reduces the 
median and minimum root mean square error (RMSE) to 8.2 and 6.4 dB (N=10) and 4.7 
and 4.2 dB (N=100), respectively. This advancement in REM construction supports 
enhanced network optimization and predictive communication strategies for 6G and 
digital twin applications. 

 
II-2.5.1.  Introduction 

The evolution towards 6G networks envisions an intelligent, hyper-connected world 
where digital twins and real-time simulations of physical environments play a crucial 
role [1]. Digital twins in wireless communications require accurate and dynamic radio 
environment maps (REMs) to predict and optimize communication quality in real-time. 
These REMs are particularly critical for autonomous vehicles and smart cities, where 
predictive quality of service (QoS) is essential for ensuring stable connectivity and safety. 

Kriging-based interpolation is widely used for constructing REMs [2-7], but 
conventional methods often assume isotropic spatial correlation, which may not reflect 
real-world anisotropic propagation effects. These leads fail to capture the directionality 
of radio propagation caused by obstacles, urban structures, and base station positions. 
To address this limitation, we propose an anisotropic Kriging-based interpolation 
method that integrates spatial correlations based on both distance and azimuth angle 
from the base station, leading to more accurate REM construction. 

The importance of considering anisotropy is illustrated in Fig.  II-44, which shows the 
correlation dependency on azimuth angle and distance [8]. This approach enhances the 
precision of wireless communication predictions, facilitating the development of reliable 
digital twins for network optimization and autonomous system deployment. 
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Fig.  II-44. Shadowing correlation dependence on azimuth angle and distance. 

 
II-2.5.2.  Conventional Methods  

Here we present the existing methods for comparison and evaluation of the proposed 
method. 

 Nearest Neighbors Interpolation (NNI): Uses the closest observed data point for 
interpolation, leading to high efficiency but low accuracy. 

 K-Nearest Neighbors (KNN): Averages data from the K nearest neighbors, 
improving accuracy at the cost of higher computation. 

 Inverse Distance Weighting (IDW): Assigns weights based on inverse distances, 
emphasizing closer data points. 

 Ordinary Kriging (OK): Interpolates using a spatial correlation model (variogram), 
assuming isotropic correlation [2]. 

 
II-2.5.3.  Proposed Method 

Our method modifies OK by incorporating anisotropic correlation shown below. 

 Shadowing Correlation Dependence: Shadowing correlation varies with azimuth 
angle from the base station [10]. Existing studies indicate that considering this 
dependency enhances accuracy. 

 Coordinate Transformation: Instead of using traditional latitude-longitude 
coordinates, we map observation points onto a plane defined by distance and 
azimuth angle relative to the base station as shown in Fig.  II-45. 

 Anisotropic Variogram: We introduce an angle-dependent range function: 

𝑎𝑎′ = �𝑎𝑎12 cos2(𝜃𝜃𝐷𝐷𝑖𝑖 − 𝜗𝜗) + 𝑎𝑎22 sin2(𝜃𝜃𝐷𝐷𝑖𝑖 − 𝜗𝜗) 

where 𝑎𝑎1 and 𝑎𝑎2  represent different correlation ranges in the primary and 
perpendicular directions. The anisotropy factor 𝐺𝐺 = 𝑎𝑎2/𝑎𝑎1  is optimized using 
leave-one-out cross-validation. 

Base station

Mobile terminal

Angle of 
arrival separation

Distance 
between terminals
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Fig.  II-45. Coordinate transformation to distance and azimuth angle plane. 
 
II-2.5.4.  Evaluation and Results 

We evaluated interpolation accuracy using 2.2 GHz path-loss measurements in an 
urban area. The dataset includes 14,000 measured points with random sampling of N=10 
and N=100 as observation points. The measurement results and an example of sample 
data for interpolation are shown in Fig.  II-46. In the evaluation, RMSE was calculated 
over 30 random samplings. 
As shown in Fig.  II-47, our method outperforms NNI, KNN, IDW, and OK, particularly 
when sample points are sparse (N=10). The proposed method achieves the lowest RMSE 
at all percentiles in the cumulative distribution function (CDF) analysis. Fig.  II-48 
shows RMSE distributions for different methods when N=10 and N=100. For N=10, 
RMSE is reduced to 8.2 dB (median) and 6.4 dB (minimum). For N=100, RMSE improves 
to 4.7 dB (median) and 4.2 dB (minimum). 

 

  
(a) All measurement (b) N=10 samples 

Fig.  II-46. Measurement results and example of sample data for interpolation. 
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(a) NNI (b) KNN (c) IDW 

  
(d) OK (conv.) (e) OK w/ anisotropy (prop.) 

Fig.  II-47. Comparison of interpolation results for different methods. 
 

  
(a) N=10 (b) N=100 

Fig.  II-48. RMSE distributions of various interpolation methods. 
 
II-2.5.5.  Conclusion 

The development of 6G networks and digital twins requires highly accurate radio 
environment maps (REM) to support predictive and adaptive wireless communication 
strategies. Our proposed anisotropic Kriging interpolation method significantly 
improves path-loss estimation accuracy by integrating the distance and azimuth-angle 
dependence of shadowing correlation. This advancement enhances REM-based 
predictive quality of service (QoS), enabling stable communication for autonomous 
vehicles, smart cities, and industrial applications. 

By incorporating spatial anisotropy into Kriging-based interpolation, we contribute to 
the foundation of real-time, data-driven digital twins that optimize wireless 
communication performance. The proposed method can be integrated into next-
generation network planning tools to enhance spectrum efficiency, improve link 
reliability, and support emerging 6G applications. 
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II-2.6.  RNN Based Prediction Method of Wireless Communication Quality 

Motoharu Sasaki, Kenichi Kawamura, Minoru Inomata, 
 Ryoutarou Taniguchi, Wataru Yamada, Tomoaki Ogawa 

NTT Corporation 
Abstract— This article presents a method for predicting variations in path loss using 

Long Short-Term Memory (LSTM) networks. The training and validation datasets 
consist of path loss measurements conducted in Kanagawa, Japan, at 2.2 GHz, 4.7 GHz, 
and 26.4 GHz. Using 100 fast-fading data points sampled at 0.1-second intervals, the 
model predicts the median path loss after one second. The Root Mean Square Error 
(RMSE) for validation data is approximately 2.2 dB at 2.2 GHz, 2.1 dB at 4.7 GHz, and 
2.4 dB at 26.4 GHz, improving prediction accuracy by more than 1 dB compared to 
conventional methods. 

 
II-2.6.1.  Introduction 

With the advancement of 5G and the transition towards 6G, the use of higher frequency 
bands (above 6 GHz) is becoming essential to meet the growing demand for ultra-fast and 
reliable wireless communication [1]. 6G is expected to enable new paradigms such as 
digital twins, where real-time synchronization between physical and virtual 
environments is critical for applications in smart cities, autonomous vehicles, and 
industrial automation [2]. 

To support such advanced applications, network topology must be flexible and capable 
of dynamically managing base station connections while maintaining optimal 
communication quality. Predicting received power in real-time is crucial for ensuring 
seamless connectivity and efficient resource allocation [4]. While deep learning models, 
particularly LSTMs, have been explored for wireless signal processing [5,6], prior studies 
have mainly focused on frequencies below 6 GHz. However, millimeter-wave and sub-THz 
bands, essential for 6G, exhibit high path loss and severe channel variations, making 
accurate channel prediction even more critical [2]. 

This work extends path loss prediction to the 2–26 GHz range, covering both sub-6 GHz 
and millimeter-wave bands, without relying on external video-based data. The proposed 
model aims to enhance real-time channel estimation for future 6G networks, contributing 
to more robust and adaptive wireless communication systems. 

 
II-2.6.2.  Proposed Model Using LSTM 

Fig.  II-49 shows our model using LSTM, a type of recurrent neural network (RNN) 
that is well known for time series prediction and has been used to predict wireless 
communication quality in recent years [7, 8, 9, 10]. RNNs mainly have a vanishing 
gradient problem, which LSTM overcomes to make long-term memory possible. Our 
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model consists of one LSTM layer with 50 units, three fully connected layers with 50 
units each, and a final output layer with one unit. The input consists of 100 fast-fading 
data points, while the output is the median path loss one second ahead. The model is 
optimized using the Adam algorithm over 200 epochs. 

 

 
Fig.  II-49. Structure of the proposed LSTM model 

 
II-2.6.3.  Measurement Method and Data Collection 

Fig.  II-50 shows the measurement environment. The measurements were carried out 
in an urban area in Yokosuka, Kanagawa, Japan. The average building height in the 
measurement environment was about 20 m. The buildings mainly consist of steel-
reinforced concrete, reinforced concrete, or timber. We used three frequency bands (2.2, 
4.7, and 26.4 GHz) and measured the path loss of all the frequencies at the same time. 
The Tx antennas were installed on building roofs at heights of about 16, 21, and 25 m 
(Tx 1, 2, and 3) in the area. The Rx antennas were set on the roof of the measurement 
vehicle at a height of 2.5 m. The received power was acquired at a sampling frequency of 
45 kHz, but we did downsampling to 9.4 Hz before data processing (data samples were 
obtained about every 0.1 sec). The vehicle drove up to about 40 km/h so the running 
distance per sample was up to about 1 meter. The measurement path loss data of Tx1 
and Tx2 are used for training, and the data of Tx3 are used to validate our LSTM model. 
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Fig.  II-50. Measurement environment in Yokosuka, Kanagawa, Japan 
 

II-2.6.4.  Results and Evaluation 
Fig.  II-51 shows the prediction results for the validation data. We compared our model 

with a conventional method (Conv.) that uses the latest observed median path loss value 
for prediction. As can be seen from the figure, the validation data can be predicted to 
follow the measurement results, and the prediction is basically performed with higher 
accuracy than the conventional method. 

 

   
(a) 2.2 GHz (b) 4.7 GHz (c) 26.4 GHz 

Fig.  II-51. Example predictions for test data. 
 
Fig.  II-52 shows the root-mean-square error (RMSE) comparison results between our 

method using LSTM and the conventional method. In both the training data and the 
validation data, the RMSE is 1 dB or smaller with our method than with the conventional 
method. At 26.4 GHz, the RMSE of the conventional method is 4 dB or more for both 
training data and validation data, while the RMSE of our method is about 2.4 dB, and 
the RMSE is improved by 1.5 dB or more. This indicates a large path loss variation in 
the high frequency band and a large error with the conventional method, while our 
method maintains the same high prediction accuracy as other frequencies. 

Tx2
(21 m)

100 m

Tx3
(25 m)

Tx1
(16 m)

Copyright. Geospatial Information Authority of Japan. ALL RIGHT RESERVED.

80

90

100

110

120

130

140
11600 11800 12000 12200 12400

Meas.
LSTM
Conv.

Pa
th

 lo
ss

 (d
B)

Sample

110

115

120

125

130

135

140
8000 8200 8400 8600 8800 9000

Meas.
LSTM
Conv.

Pa
th

 lo
ss

 (d
B)

Sample

100

110

120

130

140

150
6600 6800 7000 7200 7400

Meas.
LSTM
Conv.

Pa
th

 lo
ss

 (d
B)

Sample



 

 85 

 

 
Fig.  II-52. RMSEs of prediction results. 

 
II-2.6.5.  Conclusion 

We proposed a method of predicting path loss using LSTM, a type of RNN used in time 
series prediction. The training data and validation data use the measurement results of 
path loss at 2.2 GHz, 4.7 GHz, and 26.4 GHz in an urban environment. The median data 
(median calculation interval 100 points) was predicted one second ahead using the 100 
points of the acquired fast fading data as the input data. With our method, the prediction 
accuracy of RMSE was about 2 dB, more than 1 dB smaller than the conventional method 
using the latest observations in any frequency band including high frequency band of 26 
GHz. 
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II-2.7.  Deep Learning Propagation Loss Estimation Model Using Building Images 

R. Taniguchi, W. Inomata, M. Sasaki, W. Yamada, Y. Takatori, T. Ogawa  
Nippon Telegraph and Telephone Corporation 

Abstract—Several deep neural network (DNN) models have been proposed for path 
loss estimation in the urban macrocell (UMa) environment, mainly using building 
heights around Tx and Rx as input images to the convolutional neural network (CNN). 
However, buildings between Tx and Rx have a more significant impact on path loss than 
surrounding buildings, especially when the Tx antenna is higher than them, making 
over-rooftop propagation dominant. These paths could enhance estimation accuracy. 
This article proposes a new model incorporating a side-view image of buildings along the 
Tx-Rx line and the conventional top-view image. 

 
II-2.7.1.  Introduction 

Deep neural networks (DNNs) have achieved remarkable success across various fields. 
In wireless communication system design, convolutional neural networks (CNNs) have 
been proposed for estimating path loss and received signal levels [1–4]. Most 
conventional deep learning models use top-view images of buildings around the 
transmitter (Tx) and receiver (Rx) as input to the CNN [1–4]. However, in urban 
macrocell (UMa) non-line-of-sight (NLoS) environments, the influence of nearby 
buildings diminishes as the distance from the transmitting station increases, making 
over-rooftop propagation the dominant factor. Traditional propagation models, such as 
the Walfisch-Ikegami and Sakagami models, incorporate over-rooftop propagation using 
scalar parameters [5–8]. To improve path loss prediction in the UMa environment, DNN-
based models should also integrate this information appropriately. In this paper, we 
propose a novel DNN-based path loss prediction model that considers the propagation 
around Tx and Rx and the over-rooftop propagation between them. To achieve this, we 
introduce a side-view image along the Tx-Rx line as a new input to the CNN, 
complementing the conventional top-view image. 

 
II-2.7.2.  Conventional Model 
A. Conventional Model by Deep Learning 

Fig.  II-53 shows the basic configuration of the conventional propagation loss 
prediction model using DNN [2–4]. In the CNN part at the initial stage, the height of the 
building around Rx is input as the building map, and the distance from Tx and Rx is 
input as the image. Depending on the model, the CNN part that inputs the building map 
around Tx is parallelized and connected. At the same time, system parameters such as 
the height of the transmitting station and the distance between transmissions and 
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receptions are input to the fully connected neural network (FNN) part in the latter stage. 
The output value of the final stage is generally the path loss. 

 
Fig.  II-53. Structure of conventional model by deep learning 

 
B. Traditional Model by Multiple Regression 

In the UMa NLoS environment, as the distance from the transmitting station 
increases, the influence of buildings around the transmitter (Tx) and receiver (Rx) 
decreases. At the same time, over-rooftop propagation becomes dominant [5–8]. Fig.  
II-54 illustrates the concept of regression for over-rooftop propagation in the Walfisch-
Ikegami model, a representative traditional approach based on this principle. This model 
incorporates scalar parameters that account for diffraction over rooftops and multiple 
reflections from buildings near Rx. Key parameters, including the distance d between Tx 
and Rx, the building separation b, and the road width W, are input into the model. To 
accurately estimate over-rooftop propagation in conventional DNN models, these factors 
must also be incorporated into the input image. 

 
Fig.  II-54. Concept of over-rooftop propagation in traditional model. 

 
II-2.7.3.  Proposed Model  
A. DNN Architecture 

The Fig.  II-55 shows the configuration of the proposed model. Note that although the 
input image has been changed, the concept of how the CNN is used here is the same as 
that in Fig.  II-53. To consider both roadside propagation and over-rooftop propagation, 
it is possible to incorporate both of them into the model by inputting both the top-view 
and the side-view image. In this case, we assume that the feature is automatically 



 

 89 

extracted from the image, so the system parameter, as shown in Fig. I-1, is not defined. 
However, it is possible to create a correspondence by similarly inputting the FNN part. 

 

Fig.  II-55. Structure of proposed model. 
B. Side-View Image 

The side-view image input to the proposed model is shown in Fig.  II-56. Though 
plotted in color for ease of visualization, it is input as two-dimensional matrix data. Fig.  
II-56(a) shows the image of the boolean value indicating the presence or absence of a 
building. Fig.  II-56(b) and (c) are images of the distance information from Tx and Rx, 
respectively, for defining the location of this building. We set the range of the y-axis to 
128 m, which is sufficient for the height of the building, and the range of the x-axis to 
2048 m, which is sufficient for the distance to Rx in this paper. 

 
(a) Building height 

 
(b) Distance from Tx 

 
(c) Distance from Rx 

Fig.  II-56. Input side-view image to proposed model 
 
II-2.7.4.  Evaluation the Proposed Method 
A. Measurement Data 

The path loss data were measured with an Rx antenna mounted on a measuring 
vehicle. The average height of the buildings in this area was about 20 m. Three 
transmitting antennas with a Half Power Beam Width (HPBW) of 60 degrees were 
installed on the building's roof at 25 m, 21 m, and 16 m, respectively. The receiving 
antenna is an omni-antenna with a height of 2.5m. The measurement data were 
measured by switching the three patterns of Tx antenna installation positions and were 
limited to the NLoS environment. That is, the height of the surrounding buildings is 
higher than the Tx antenna position, and it is limited to the measurement data where 
the over-rooftop propagation between Tx and Rx becomes dominant, equivalent to Fig.  
II-54. 
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(a) Model using only side-view image 

 
(b) Proposed model (using top-view 

and side-view images) 
Fig.  II-57. Prediction results of path loss. 

B. Evaluation Results 
Fig.  II-57 shows the prediction results of the path loss. Although the conventional 

model (a) can be estimated to some extent, the variance of the prediction results is rather 
large regardless of the distance, and the RMS error is about 9 dB. This is probably 
because the over-rooftop propagation is not considered in the input image, leading to 
overfitting in the image around Rx. In contrast, in the result (b) of the proposed model 
using both the top-view and side-view images, we can confirm that the variance is 
suppressed. This is probably due to the improved estimation by the side-view images, 
which take into account the propagation between Tx and Rx, and the RMS error is less 
than 6 dB. 

 
II-2.7.5.  Conclusion 

Conventional propagation loss estimation models using deep learning cannot input the 
over-rooftop propagation of buildings between Tx and Rx. We, therefore, proposed a new 
model in which the side-view images on straight lines are added to the input. Our 
evaluation using the measurement data in an urban NLoS environment demonstrated 
that the proposed model exceeds the estimation accuracy of the conventional model 
thanks to using the side-view image between Tx and Rx. We also found that the 
estimation error of the proposed model is less than 6 dB for the configuration using both 
the top and side-view images. 
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II-2.8.  Achievable Channel Capacity of Multi-Beam MIMO Transmission at 300 GHz 

Minseok Kim 
Niigata University 

 
Abstract— This article investigated the feasibility of multipath communication at 300 

GHz using multi-beam MIMO, focusing on the achievable capacity in line-of-sight (LoS), 
Obstruct-LoS (OLoS), and Non-LoS (NLoS) channels. The analysis is based on a 
measurement campaign conducted in an outdoor hot spot environment. The findings are 
presented in terms of the number of nontrivial propagation streams that support multi-
beam MIMO transmission. Motivated by these results, the study evaluates the average 
achievable channel capacity of multi-stream channels, both with and without passive 
reflecting surfaces (PRS). The results indicate that multi-beam MIMO significantly 
enhances capacity compared to single-beam systems, with PRS further improving 
performance. 

 
II-2.8.1.  Introduction 

Exploring frequency bands beyond 100 GHz is essential for the development of 6G 
communication networks, enabling advanced applications such as the metaverse, 
augmented reality, and holographic communications. The terahertz (THz) band offers 
immense potential due to its vast bandwidth, but it also introduces significant challenges, 
including lower output power and higher propagation loss [1]. Increasing transmission 
frequency allows for denser integration of antenna elements into compact designs, 
helping to counteract propagation loss. However, achieving optimal performance 
requires a comprehensive understanding of signal propagation in the targeted frequency 
range and an evaluation of the benefits of multiple antenna systems at both the 
transmitter (Tx) and receiver (Rx). Research in this field should focus not only on 
characterizing signal propagation but also on examining the effectiveness of multi-beam 
systems in mitigating propagation challenges [2]. By integrating advancements in 
antenna technology, signal processing, and network architecture, researchers can unlock 
the full potential of wireless communication beyond 100 GHz. 

This article presents a channel measurement campaign conducted in an outdoor 
environment using an in-house-developed 300 GHz channel sounder, as described in [3]. 
It also details the ergodic channel capacity calculations based on a multi-beam MIMO 
transmission model, where the number of MIMO streams varies. The study investigates 
the feasibility of leveraging non-line-of-sight (NLoS) multipath components (MPCs) for 
spatial multiplexing to enhance channel capacity [4]. Furthermore, it examines the 
impact of strategically deploying passive reflecting surfaces (PRSs) on capacity 
improvement. By addressing these aspects, the study enhances the understanding of 
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outdoor ultra-high-speed wireless access at 300 GHz, emphasizing the role of NLoS 
MPCs and PRSs in improving channel capacity. 

 

II-2.8.2.  Measurement Campaign 
The channel measurement campaign was conducted in an open square environment 

on a university campus using an in-house-developed 300 GHz channel sounder [5]. The 
Tx and Rx antennas were designed with a half-power beamwidth (HPBW) of 9 degrees 
in the azimuth (Az) plane and had a gain of 26 dBi. Due to transmit power limitations, 
the received signal-to-noise ratio (SNR) degraded significantly because of the high 
propagation loss at 300 GHz. To address this issue, coherent averaging was applied to 
the continuously received symbols over 100 symbol durations during the measurement 
campaign. The Tx antenna was placed at the center of the square to simulate an access 
point (AP) or base station and was mounted at a height of 3.1 meters above ground level. 
The Rx antenna, acting as user equipment (UE), was positioned at 1.5 meters and 
sequentially moved to 15 different locations within a radial distance of 10 to 50 meters 
from the Tx. In the LoS scenario, represented by Rx01 to Rx11, the direct Tx-Rx link 
remained unobstructed. In contrast, the OLoS scenario, observed at Rx12 and Rx13, 
experienced partial signal obstruction due to foliage. The NLoS scenario, corresponding 
to Rx14 and Rx15, occurred when the direct line-of-sight path was completely blocked by 
surrounding buildings. To examine directional propagation characteristics, directional 
scan measurements were performed by rotating both the Tx and Rx antennas across a 
full 360-degree azimuth range in 9-degree increments. 

 
II-2.8.3.  Ergodic Capacity Evaluation 

The ergodic capacity for a multi-beam MIMO transmission between a UE and an AP 
in an open square environment is evaluated. To simulate a multi-beam MIMO 
configuration, the angular samples measured at both the Tx and Rx are treated as beams, 
similar to a phased antenna array (PAA) beam book. Measurement results indicate the 
presence of three to four significant NLoS clusters on average at each position, leading 
to the consideration of up to four streams in the emulation. Tx-Rx beam pairs are selected 
based on the power of the identified clusters, establishing an 𝑀𝑀×𝑀𝑀 MIMO configuration 
when 𝑀𝑀 Tx beams and 𝑀𝑀 Rx beams are used. In the capacity calculation, the signal-to-
noise ratio (SNR) for the nearest Rx position (Rx10), which experiences the lowest path 
loss at approximately 10 meters of separation distance, is set to 30 dB. The SNR values 
for other positions are adjusted proportionally based on their relative path loss compared 
to that at Rx10. The cumulative distribution function (CDF) of the average channel 
capacity is depicted in Fig.  II-58, where multicolored lines represent different 
configurations. The results highlight that with optimal positioning, multi-stream 
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propagation can achieve channel capacities exceeding 20 bps/Hz when the Rx is within 
the LoS path of the Tx. Furthermore, Fig.  II-59 illustrates the increase in average 
channel capacity with the number of streams, showing that employing four streams 
nearly doubles the capacity compared to a single-input single-output (SISO) 
configuration. To assess the impact of PRS, metal-based PRS structures are assumed to 
be positioned at the interaction points of NLoS paths. The improvement in average 
channel capacity due to PRS is represented by multicolored dotted lines in Fig.  II-59. 
The findings reveal that incorporating PRS in a 4×4 MIMO channel configuration results 
in an average achievable capacity approximately 2.7 times greater than that of SISO. 
These results underscore the effectiveness of beamforming in facilitating spatial 
multiplexing and enhancing channel capacity in THz MIMO channels for outdoor hot 
spot access scenarios, particularly when combined with PRS deployment. 

 

II-2.8.4.  Conclusion 
This article presented double-directional channel measurements at 300 GHz in an 

open square hot spot scenario using high-gain directional horn antennas. Channel 
capacity analysis showed that even without PRS, a 9 bps/Hz capacity is achievable in 
LoS at 10 m with 20 dB SNR. With 4×4 MIMO and PRS, the capacity doubles, exceeding 
18 bps/Hz, highlighting the potential of THz MIMO communication in open 
environments. 

 

 
Fig.  II-58. Measurement scenario. 

 
Fig.  II-59. Achievable channel capacity. 
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II-2.9.  AI/ML-based Radio Propagation Prediction Technology 

Tetsuro Imai, Tokyo Denki University 
Koshiro Kitao, NTT DOCOMO. INC. 

Satoshi Suyama, NTT DOCOMO. INC. 
 

Abstract—Recently, advancement of AI/ML has been remarkable, and many applied 
research studies are attracting attention now. This is also true in the field of radio 
propagation. This article introduces its application to radio propagation prediction, 
which is currently under intensive study.  

 
II-2.9.1.  Introduction 

In recent years, artificial intelligence (AI) / machine learning (ML) has made 
remarkable progress, and many applied research studies have been reported. Here, they 
are mainly based on deep learning. The deep learning is one of the methods of ML for 
neural networks with many layers (or DNN: deep neural network). Deep learning has 
succeeded the dramatic performance improvement of image recognition, natural 
language processing etc., while utilizing of abundant computer resources and big data. 
The main reason for its success is that the deep learning can automatically extract 
features of contents. 

In mobile communications, accurate prediction of radio propagation characteristics is 
needed for optimum cell design, various prediction models have been proposed so far [1]. 
These are categorized into two types. One is physical-based model which is based on 
electromagnetic theory, and another is statistical (or data-driven) model which is based 
on measurement data. Here, ray tracing (RT) is one of the physical-based models and 
has become popular tool for radio propagation analysis in recent years. In RT, various 
propagation characteristics such as loss, time of arrival, angle of arrival and so on can 
be predicted by tracing rays between transmitter (Tx) to receiver (Rx) while taking 
interaction (reflection, diffraction, transmission) into account. However, increasing the 
number of interactions considered to improve the prediction accuracy increases the 
computation time. So, when the target characteristic is only propagation loss, the 
statistical model, e.g. Okumura-Hata model [2] is preferred.  

In statistical modeling, multi-regression analysis has been applied to model the data 
[3]. The multi-regression analysis is a very powerful tool, but it is needed to manually 
determine input parameters (especially environmental parameters related to building, 
street, etc.) and functional form beforehand. This is very difficult because there are a lot 
of candidates. So, the prediction models with neural network (NN) have been proposed 
in [4], [5]. By using these models, functional form is automatically generated, and it is 
reported that prediction accuracy for propagation loss is improved. However, the models 
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are based on conventional fully connected neural network (FNN), optimal input 
parameters must be investigated, manually.  

As mentioned above, the deep learning can automatically extract features of contents. 
Especially, deep convolutional neural network (DCNN) are very useful to extract 
features from image. This means that optimal parameters for propagation loss prediction 
can be automatically obtained from map data with information such as building spatial 
distribution. So, DCNN-based model has been proposed for propagation loss prediction 
[6] and is currently being vigorously studied [7]-[12]. This paper presents our latest 
results in [12]. 
 
II-2.9.2.  DCNN-based Radio Propagation Prediction Model 

II-2.9.2.1.  DCNN Configuration 
DCNN of our proposed model is constructed by two parts: feature extraction part and 

prediction part, as show in Fig.  II-60.  
The feature extraction part is for extraction of features of contents as key parameters 

for propagation loss prediction, and it is constructed by DCNN which has 13 
convolutional layers: Conv_1 – Conv_13, and five max. pooling layers: Pool_1 – Pool_5. 
First, three maps (the size of each map: 256-by-256) are input. In Conv_1&2 layers, 
convolutional processing with 32 filters (the size of each filter: 3-by-3) is done and then 
the 32 maps (the size of each map: 256-by-256) are obtained. In next Pool_1 layer, max. 
pooling processing is done for 32 maps. Here, pooling size is 2-by-2, so the size of output 
map is reduced to 128-by-128. After the similar convolutional and pooling processing are 
repeated, 256 maps (the size of each map: 8-by-8) are output from Pool_5 layer. Here, 
the number of samples is 16384 (=8×8×256) and these are input to Dense_1 layer after 
conversion process to 1 D data in Flatten_1. The prediction part is constructed by FNN 
with two fully connected layers: Dense_1 and Dense_2. After the processing in 
Dense_1&2, propagation loss is predicted as output. Note that activation function is 
defined as: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥  in Dense_2 layer; otherwise, Rectified Linear Unit function, i.e. 
𝑓𝑓(𝑥𝑥) = max(0,𝑥𝑥). 

 
Fig.  II-60. DCNN configuration 

II-2.9.2.2.  Input Map Data 
In our model, the spatial information of rectangular area centered on mobile station 

(MS) position is input to DCNN as map data. The size of rectangular is 256 m -by- 256 
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m, and the area is sampled with 1 m mesh, so, the sample size is 256-by-256. In addition, 
the rectangular is defined so that the base station (BS) always exist in a certain direction. 
Specifically, as shown in Fig.  II-61, the rectangular region is defined so that BS is 
oriented positively on the xm axis in the local coordinates of the map with MS as the 
origin. By this definition, the spatial information about “BS direction” are indirectly 
considered for DCNN learning, even if the BS position are not directly input to the 
DCNN as parameter. 

 

Fig.  II-61. Definition of rectangular region 
 
Input maps are three as follows. 

 BS distance map: Map with distance from BS to each mesh as an element. 
 MS distance map: Map with distance from MS to each mesh as an element. 
 Building map: Map with building height information in each mesh. 
In the building map, the height is normalized by the height of Fresnel-zone center when 
assuming one time scattering. This advantage is that BS antenna height and MS 
antenna height are indirectly considered as input parameters. Fig.  II-62 shows the 
examples of input map data. 
 

   
(a) BS distance map (b) MS distance map (c) Building map 

Fig.  II-62. Examples of input map data 
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II-2.9.3.  Performance of DCNN-based Model 
II-2.9.3.1.  Measurement data 
Propagation loss data measured in Kokura area are used for performance evaluation. 

Here, the data can be obtained for free from AP propagation database [13]. Fig.  II-63 
and Table.  II-8 show the measurement area and conditions, respectively. 

 
Fig.  II-63. Measurement area (Kyushu Kokura area, Japan): 

White lines represent measurement courses. 
 

Table.  II-8. Measurement conditions 

 
In this paper, the data of 5 courses (#6, #19, #24, #27, #32) are used for validation, the 

remaining data of 29 courses are for DCNN training. Here, data of course #5 is not used 
because sufficient input map data could be obtained. The total number of samples (or 
MS points) is 81 for validation and 713 for training. 
 

II-2.9.3.2.  Evaluation results 
Fig.  II-64 shows the prediction results for validation data. Horizontal axis represents 

distance from BS and vertical axis represents propagation loss. We find that 
measurement and prediction are agree well. Here, RMS error is 3.23 dB. 
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Fig.  II-64. Prediction results. 

 
The extracted features after training DCNN can be visualized by using Grad-CAM 

(Gradient-weighted Class Activation Mapping) [14], which one of XAI (Explainable AI) 
algorithms. Therefore, Grad-CAM were performed for three points as shown in Fig.  II-65. 
Fig.  II-66 shows the analysis results with Grad-CAM. In Fig.  II-66, the larger the 
gradient value, the higher the contribution for the propagation loss prediction. From the 
results, DCNN-based model is thought to use the "distribution of low-rise buildings and 
spaces without buildings" in the vicinity of MS as the basis for determining the 
propagation loss prediction. 

 

 
(a) Positional relationship with BS 

A B C 

   
(b) Maps in local coordinate system 

Fig.  II-65. Reception points for evaluation of extracted features from map data. 
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(a) Point A (b) Point B (c) Point C 

Fig.  II-66. Analysis results with Grad-CAM when using multiple maps. 
 

Finally, Fig.  II-67 shows propagation loss distribution predicted by trained DCNN 
when BS are installed in different location. Note that the other propagation conditions 
are same as that in table I. From this figure, we can see that even if the distance from 
the BS is the same, the propagation loss increases in areas with dense buildings. 

 
Fig.  II-67. Propagation loss distribution predicted by trained DCNN. 

 
II-2.9.4.  Conclusion 

In this paper, we introduced DCNN-based model for radio propagation loss prediction. 
This model predicts the propagation loss from map data with information such as 
building spatial distribution and its prediction accuracy is higher than conventional 
model based on multi-regression analysis. In our study, RMS error of about 3 dB is 
obtained. And also, we showed that the basis for determining the prediction in the 
DCNN-based model can be confirmed by Grad-CAM. 
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Abbreviation List 

Abbreviation Explanation 

ABG Alpha-Beta-Gamma 

AI Artificial Intelligence 

ALD Atomic Layer Deposited 

AMC Adaptive Modulation and Coding 

AoA Angle of Arrival 

AR Augmented Reality 

ASIC Application Specific Integrated Circuit 

AWG Arbitrary Waveform Generator 

BAN Body Area Network 

BCB Benzo cyclobutene 

BER Bit Error Rate 

BF BeamForming 

BS Base Station 

CC Component Carrier 

CI Close-in 

CMOS Complementary Metal Oxide Semiconductor 

CPS Cyber Physical System 

CSI Channel State Information 

DC Direct Current 

DFT Discrete Fourier Transform 

DL Down Link 

DNN Deep Neural Network 

DOA Direction of Arrival 

DSP Digital Signal Processing 

EIRP Equivalent Isotropically Radiated Power 

EVM Error Vector Magnitude 

eWLB embedded Wafer Level Ball grid array 

FDD Frequency Division Duplex 

FDE Frequency Domain Equalize 

FSPL Free Space Path Loss 
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Abbreviation Explanation 
HARQ Hybrid Automatic Repeat Request 

HPBW Half Power Beam Width 

IBO Input Back Off 

IFFT Inverse Fast Fourier Transform 

InH Indoor hotspot cell 

ISAC Integrated Sensing and Communication 

ITU-R International Telecommunication Union 
Radiocommunication Sector 

KPI Key Performance Indicator 

LAN Local Area Network 

LNA Low-Noise Amplifier 

LOS Light of Sight  

LTE Long Tern Evolution 

MCM Multichip Module 

MIMO Multiple-Input and Multiple-Output 

MMIC Monolithic Microwave IC 

MS Mobile Station 

MOS Metal Oxide Semiconductor 

MOS-HEMT Metal-Oxide-Semiconductor Eigh-Electron-Mobility 
Transistor 

MSL Microstrip Line 

NLOS Non-Line of Sight 

NR New Radio 

NRNT New Radio Network Topology 

OAM Orbital Angular Momentum 

OFDM Orthogonal Frequency Division Multiplexing 

PA Power Amplifier 

PAE Power Added Efficiency 

PCB Printed Circuit Board 

PLE Path Loss Exponent 

QMH Qualitative Microwave Holography 

RAN Radio Access Network 

RAT Radio Access Technology 
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Abbreviation Explanation 
RD Relay Device 

RF Radio Frequency 

RIS Reconfigurable Intelligent Surface 

RMSE Root Mean Square Error 

RS Relay Station 

Rx Receiver 

SAG Selective-Area Growth 

SC Single Carrier 

SiP System-in-Package 

SISO Single-Input Single-Output 

SIW Substrate-Integrated Waveguide 

SNR Signal to Noise power Ratio 

TDD Time Division Duplex 

TDS Time Domain Spectroscopy 

THz Tera Hertz 

TMA Trimethylaluminum 

TSV Through-silicon Via 

Tx Transmitter 

UCA Uniform Circular Array 

UE User Equipment 

UL Up Link 

VR Virtual Reality 
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