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Preface 

Towards the Beyond 5G/6G era, the technological evolution of communication 
networks is progressing rapidly, and artificial intelligence (AI) and machine learning 
(ML) technologies will play a significant role in this evolution. The introduction of AI 
technology into 5G is already being considered at a rapid pace, and applications using 
AI are being installed in smartphones. 

 
In addition, in the 6G era, digital twin (DT) technology is considered to be very 

important, in which the real world is reproduced in cyberspace, and data collected from 
the real world is used to simulate and emulate beyond the constraints of the real world 
using AI, etc., to gain new knowledge, and to feedback and utilize those knowledge to the 
real world. 

 
These AI/ML and DT technologies will be used in various fields to enhance the 

capabilities of Beyond 5G/6G. Beyond 5G White Paper Supplementary Volume "AI/ML 
Technologies" already published by XGMF introduced (i) AI/ML technologies for network 
operation and management, (ii) AI/ML technologies for optimizing radio access resource 
management, and (iii) AI/ML technologies for user/application-centric communications. 

 
This white paper targets the utilization of DT technology in addition to the AI/ML 

technologies mentioned in the above Beyond 5G White Paper Supplementary Volume. 
As 6G Radio Technology Project of XGMF, this white paper summarizes the latest trends 
and research and development (R&D) activities of the utilization of AI/ML and DT 
technologies in the 6G radio technology field. Specifically, it describes the trends of 
standardization in 3GPP and O-RAN toward 6G, as well as the status of global 
technology studies. In addition to the content of the previous Beyond 5G White Paper 
Supplementary Volume, this white paper also introduces in detail cutting-edge R&D 
efforts on the AI/ML and DT technologies for Beyond 5G/6G in Japan. 

 
In conclusion, as technological evolution progresses towards Beyond 5G/6G, the AI/ML 

and DT technologies are emerging as one of key elements in this technological evolution. 
Japan is at the forefront of the next-generation mobile communications revolution due 
to its efforts to overcome challenges to realize the AI/ML and DT technologies and its 
commitment to R&D in this area. The purpose of this white paper is to provide a 
comprehensive overview of the potential, challenges, and future directions of the AI/ML 
and DT technologies for Beyond 5G/6G, with particular emphasis on initiatives and 
progress in Japan. 
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I.  Trends of AI/ML and Digital Twin towards 6G 

The rapid evolution of wireless communication technologies is paving the way for the 
next generation of connectivity, known as Beyond 5G or 6G. As we move towards this 
new era, the integration of artificial intelligence (AI) / machine learning (ML) and digital 
twin technologies becomes crucial. These technologies promise to revolutionize the way 
we design, manage, and optimize wireless communication systems, leading to 
unprecedented levels of efficiency, reliability, and user experience. This section 
introduces both standardization and technology trends of AI/ML and digital twin. 
 
 
I-1.  Standardization in 3GPP and O-RAN for AI/ML 

Tetsuya Yamamoto, Hidetoshi Suzuki 
Panasonic Holdings Corporation 

Liqing Liu, Kozue Hirata 
Sharp Corporation 

Noboru Osawa, Yu Tsukamoto 
KDDI Research, Inc. 

 
The AI/ML technologies have been advanced remarkably in recent years. Applying 

them to wireless communications has received increasing attention. The integration of 
AI/ML to enhance network performance, efficiency, and scalability are active discussion 
in the standardization bodies such as 3rd Generation Partnership Project (3GPP) and 
Open Radio Access Network (O-RAN) alliance [1, 2]. This section provides a brief 
overview of the current AI/ML standardization status within 3GPP and O-RAN. 

 
I-1.1.  Standardization in 3GPP 

In 3GPP, the initial specification of 5G is Release 15. Functional improvements and 
additions for 5G are Release 16 and 17. Release 18 and later are named as 5G-Advanced 
by 3GPP. In 5G-Advanced, the system performance and efficiency of enhanced mobile 
broadband (eMBB) are improved to address the short-term needs. Additionally, the use 
cases and services are further expanded to address the need of various verticals like 
satellite industry. Furthermore, new technology domains based on long- to medium-term 
needs like application of AI/ML are studied and standardized [3]. 3GPP will start 
discussions on 6G from Release 20 and to standardize it in Release 21. A workshop on 
6G was held in March 2025. 

AI/ML can be applied to various purposes. Therefore, numerous studies and 
standardization in areas such as applications, media, system management and radio 
access network (RAN), are progressing within 3GPP. This section describes the status 
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related to application of AI/ML to RAN, which is specific to wireless communication. The 
application of AI/ML to RAN can be categorized into two types: 1) applying AI/ML 
technologies within the wireless network, such as base stations (BSs), and 2) applying 
AI/ML technologies to the air interface, which is the communication between user 
equipment (UE) and BS. 

In the application of AI/ML within RAN, AI/ML technologies could be applied to 
various BS processing to achieve optimal network management and the network 
performance enhancement. In Release 17, the application of AI/ML in three areas were 
studied [4]: 1) network energy saving, 2) load balancing, and 3) mobility optimization. 
Standardization of them was completed in Release 18 in June 2024 [5, 6]. Furthermore, 
in Release 19, functional extensions for new use cases such as network slicing and 
optimization of coverage and capacity are ongoing. Additionally, items that not finalized 
in Release 18 are also under discussion, including the case that base stations functions 
are split into centralized nodes and distributed nodes [7]. For Release 20 5G-Advanced, 
new AI/ML-based use cases based on current 5G architecture and interface are 
considered with QoE optimization, network energy saving, and mobility (including 
multiple-hop target node UE trajectory) as the potential candidates for study [8]. 

In the application of AI/ML to air interface, AI/ML technologies could be utilized for 
enhanced and efficient performance. In Release 18, feasibility of the application of AI/ML 
to air interface was studied [9, 10]. This involved the general framework discussion for 
AI/ML for air interface, as well as the study of specific use cases such as the channel 
state information (CSI) feedback enhancement, beam management, and positioning. In 
Release 19, the actual standardization work is on the progress to realize use cases, such 
as beam management, positioning, and CSI prediction, where the introduction of AI/ML 
technologies would be effective, based on the study from Release 18 [11]. In addition, use 
cases that were not concluded in Release 18 (CSI compression) and new use case 
(mobility) are also to be studied [12, 13]. These use cases are the potential candidates for 
normative work in Release 20 5G-Advanced [8]. The following provides an overview of 
the study of AI/ML to air interface in Release 18 and the current discussion status in 
Release 19. 

 
I-1.1.1.  Framework of AI/ML to Air-interface 

For the framework discussion of AI/ML to air interface, life cycle management (LCM), 
which is the process for appropriately utilizing AI/ML models, was addressed. It was 
identified that the framework for AI/ML application includes elements such as data 
collection, model training, model storage and transfer, inference using models, and model 
management. The relationships among these elements are summarized in Fig. I-1.1.1-1. 
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Fig. I-1.1.1-1: Framework / LCM for applying AI/ML 

 
In Release 18, three levels of coordination were discussed. 
- Level X: AI/ML is implemented, but there are no AI/ML-specific standardization 

extension. For example, AI/ML may be used for channel estimation at UE without 
informing the information related to the usage of AI/ML to the BS. 

- Level Y: There is AI/ML-specific enhancement using the control signal between the 
UE and the network, but there is no transfer of AI/ML models. For instance, based 
on the radio conditions and BS configuration, the network may instruct the UE to 
perform specific AI/ML operations. 

- Level Z: There is a transfer of AI/ML models between the UE and the network. For 
example, AI/ML models trained within the 3GPP network are transferred to the 
UE for the inference. 

In Release 18, two different types of LCM were identified for controlling UE-side 
AI/ML models from the network. 

- Functionality-based LCM 
- Model-ID-based LCM 

In functionality-based LCM, the network controls functionalities without aware of the 
UE’s AI/ML models. By utilizing control signals, the network instructs the selection, 
activation, deactivation, switching of AI/ML-enabled functionalities, and fallback to non-
AI/ML functionalities, while the actual management of the models are within the UE. In 
model-ID-based LCM, the network is aware of the UE’s AI/ML models and controls them. 
Models are identified by model IDs and can be categorized into; 1) physical models, where 
the model structure and parameters are shared between UE and network, and 2) logical 
models, where the actual model structure and parameters are not shared but certain 
characteristics are shared between UE and network. 

When AI/ML models are trained with real field data, they are influenced by not only 
the parameters defined by 3GPP but also conditions that include implementation-
specific scenarios of networks and UEs. Examples of them are BS antenna beam shapes 
and beam control, power control, and implementation-specific receiver algorithms. These 
are called as additional conditions. There is ongoing discussion on which of these 
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parameters and conditions must be aligned between the training and the inference for 
the efficient usage. Ideally, these additional conditions should be aligned between the 
training and inference. However, these conditions can contain proprietary information 
held by stakeholders such as network operators, network vendors, UE vendors, and users. 
Therefore, methods to align the additional conditions without disclosing proprietary 
information as much as possible are studied. One of examples is to exchange the trained 
model parameters and/or dataset between UE and network, which would not disclose 
proprietary information. 

For the efficient usage of AI/ML-enabled functionalities in wireless communication, it 
is crucial that good performance can be maintained across various scenarios and 
conditions, such as different mobility speeds, radio propagation environments, and BS 
antenna configurations. Two main approaches have been discussed for achieving this: 1) 
model generalization, and 2) model switching. Model generalization means a single 
AI/ML model is generalized to handle different scenarios and varying BS antenna 
configurations by using diverse datasets. This approach may lead to larger model sizes 
and increased complexity, which can pose implementation complexity and power 
consumption on UEs. Model switching, on the other hand, entrails using AI/ML models 
that are tailored to specific conditions, such as particular cells. Then, network or UE 
selects appropriate AI/ML models for the specific conditions. While each model may be 
less complex and potentially offer higher performance, this approach has challenges to 
determine which model to be used in certain conditions or environments and how to 
manage and control larger number of models. For example, to select to appropriate model 
could require sharing proprietary network-side information with the UE, as previously 
mentioned. 

 
I-1.1.2.  CSI Feedback Enhancement 

Accurate CSI is vital for optimal link adaptation and resource allocation. In 3GPP, CSI 
feedback mechanism involves the UE measurements and CSI reporting. However, a 
temporal delay exists between the CSI report time and the time when BS uses the CSI 
for traffic transmission. This temporal delay can result in that the reported CSI becomes 
outdated CSI, particular for mobile UEs, where the reported CSI no longer reflects actual 
channel conditions the UE experiences. The outdated CSI could degrade link 
performance and scheduling efficiency. 

To address the challenges, 3GPP discusses the use of AI/ML on UE side for temporal 
CSI prediction. The AI/ML-based temporal CSI prediction aims to predict CSI for 
channel conditions associated with future time instances based on historic CSI 
measurements. 

Studies were conducted in Release 18 and parts of Release 19 and the performance 
improvement is observed. For example, it was observed that user perceived throughput 
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(UPT) could improve by approximately 5% compared to non-AI/ML-based CSI prediction 
method that is introduced in Release 18 to improve performance loss for a UE at high / 
medium especially in MU-MIMO scenarios. 

As a result, standardization of CSI prediction using UE-side model is proceeding in 
Release 19 starting from Q1 of 2025. This effort focuses on developing the functionality-
based LCM procedures necessary to support data collection for AI/ML training, inference 
configuration and reporting, and performance monitoring. Additionally, the contents of 
the predicted CSI to be reported to BS, such as whether to reuse the Release 18 Type II 
Doppler codebook, are to be specified. For performance monitoring, discussions are 
ongoing regarding whether to introduce intermediate-KPI-based performance 
monitoring mechanism with squared generalized cosine similarity (SGCS) being 
considered as potential intermediate KPIs. 

CSI reporting overhead is a challenge when the number of antennas and frequency 
resources is increased. To address the overhead, 3GPP also discusses the compression of 
CSI using AI/ML. Specifically, the UE compresses the CSI in the spatial and frequency 
domains using an AI/ML model, and reports the compressed information to the BS as 
CSI report. The BS then uses an AI/ML model on the network-side to reconstruct the 
original CSI from the compressed information, reported by the UE. In the studies 
conducted in Release 18, a reduction in CSI overhead of approximately 10% to 60% was 
observed compared to traditional CSI reporting methods, i.e., not using AI/ML [10]. 

CSI compression involves a two-sided model where inference processing using AI/ML 
models is executed on both UE side and network side. One of the challenges in 
considering two-sided model is how to coordinate training between UE side and network 
side. With this context, in Release 18, several types of training that involve different 
degrees of collaboration between UE side and network side were studied in terms of 
inter-vendor training collaboration complexity, performance, maintainability, and 
standardization impact. CSI compression using two-sided AI/ML model continues to be 
studied in Release 19 in order to alleviate / resolve the issue related to inter-vendor 
training collaboration. The issue on improving the trade-off between performance, 
computational complexity / overhead is also under discussion. 

 
I-1.1.3.  Beam Management 

Especially in high-frequency bands, such as millimeter wave, beamforming operation 
is essential to extend coverage and maintain robust connectivity in a cell. Since Release 
15, beam management (BM) has been supported in 3GPP new radio (NR) specifications. 
To extend the coverage of a beam while still covering the cell area, BS needs to apply a 
larger number of narrow beams. However, this increases the overhead of CSI reference 
signal (CSI-RS) transmission for BM. In addition, the inherent delay between beam 
reporting and beam utilization could lead to the use of outdated beam information, 
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particularly for medium / high mobility UEs, resulting in inappropriate beam choices for 
traffic transmission. 

To address these challenging BM issues, 3GPP has initiated discussions on applying 
AI/ML to BM. Two BM cases, 1) BM Case 1, i.e., “spatial-domain downlink beam 
prediction” and 2) BM Case 2, i.e., “temporal downlink beam prediction”, were studied 
and evaluated in Release 18. 

For BM Case 1, optimal beam(s) are predicted from a set of downlink beams (“set A 
beams” based on measurement results from a set of downlink beams (“set B beams”) 
which is a subset of the “set A beams” or beams different from “set A beams”, This 
approach aims to reduce the overhead associated with massive CSI-RS transmission for 
beam measurement. For BM Case 2, optimal beam prediction is performed based on 
historic measurement results. This approach allows the AI/ML to capture and learn the 
evolution of channel conditions over time, thereby predicting optimal beams for future 
time instances. As evaluated during the study phase in Release 18, AI/ML can provide 
good beam prediction performance. For example, for BM Case 1, most evaluation results 
showed that 70% ~ 90% or even more than 90% beam prediction accuracy could be 
achieved by measuring only 1/4 of the beams, compared to measure all beams. 

AI/ML for BM Case 1 and Case 2 can be implemented on either UE side or BS side. 
Standardization efforts are underway to specify the necessary signaling and procedure 
to support AI/ML training, inference, and performance monitoring. Existing CSI 
framework is reused to integrate the AI/ML for BM in the current 3GPP specification, 
ensuring minimal specification impact. 

 
I-1.1.4.  Positioning 

In 3GPP, various positioning mechanisms has been specified for both downlink and 
uplink, including positioning using reference signals, positioning based on timing 
differences, positioning based on signal power, and positioning based on the angle of 
arrival of received signals, etc. 

A key challenge in positioning is that the accuracy of location estimation heavily 
depends on whether measurements can be performed in line-of-sight (LOS) 
environments. In non-line-of-sight (NLOS) environment, such as indoor factories, or in 
environments with a high degree of multipath, the accuracy of positioning degrades. 

Therefore, positioning accuracy improvement using AI/ML was considered. 
Specifically, two sub use cases were discussed: 1) location information is directly 
estimated using AI/ML models, and 2) AI/ML models generate intermediate statistical 
information for positioning estimation. 

For direct location information estimation, two approaches were identified as 
illustrated in Fig. I-1.1.4-1: 1) performing training and inference on UE side, and 2) 
having the BS assist in training and inference through the location management 
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function (LMF). Here, the LMF is a network function responsible for location information 
services as located in the 5G core network. In the studies in Release 18, it was found that 
the accuracy can be improved from 15 meters to below 1 meter using AI/ML models in 
indoor factory scenarios. 

 

 

(a) UE-side model                                           (b) BS-assisted LMF-side model 
Fig. I-1.1.4-1: Application of AI/ML for positioning accuracy improvement 

 
For intermediate statistical information for positioning estimation, to use timing and 

LOS / NLOS determination were discussed. It was studied whether training and 
inference would be performed solely on BS side or solely on UE side. In Release 18 study, 
a significant accuracy improvement was observed, comparable to the case of directly 
estimating location information. 

Based on the Release 18 study, the positioning accuracy improvement is specified in 
Release 19. For direct estimation of location information using AI/ML models, both 
scenarios where training and inference are performed on UE side and where BS assists 
the training and inference through LMF, are to be specified. For generating intermediate 
statistical information using AI/ML models, scenarios where training and inference are 
conducted on BS side, are to be specified. Additionally, as the intermediate statistical 
information, at least information related to LOS / NLOS conditions and timing 
information, are to be used. Furthermore, signaling and mechanisms for LCM of AI/ML 
models are progressing. Additionally, methods for aligning the network-side additional 
conditions between the training and inference for UE-side inference are also under the 
discussion. 

 
I-1.1.5.  Mobility 

To further enhance the mobility functions, AI/ML for mobility is currently under 
investigation as a study item in Release 19. The primary role of the mobility function is 
to manage the transition from the serving cell to a cell / gNB with higher quality based 
on the measurement results obtained from the UE, referred to as handover. AI/ML is 

Synchronization signal，
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AI/ML model
Measurement UE location

SRS

LMF

AI/ML model
Measurement UE location
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expected to improve the efficiency of the mobility function, with two goals identified for 
this study, as illustrated in Fig. I-1.1.5-1 and I-1.1.5-2. 

 

 
Fig. I-1.1.5-1: Measurement reduction for mobility 

 

 
Fig. I-1.1.5-2: Handover event prediction 

 
The first study goal is the reduction of measurement effort, shown in Fig. I-1.1.5-1. In 

this use case, UE skips measurements on certain resource that are usually measured for 
mobility functions. Instead of performing actual measurements, AI/ML predicts the 
received power at these resources and complements the measurement results 
accordingly. Consequently, UE can reduce the measurement effort if the accuracy of the 
prediction is sufficiently high. While Fig. I-1.1.5-1 outlines time domain predictions, 
investigations into predictions in the frequency and spatial domains are also underway. 

The second study goal focuses on improving handover performance by prediction of 
handover situation. In Fig. I-1.1.5-2, AI/ML predicts whether a handover-related event 
is likely to occur in the future. Using the results of these predictions, a prediction-based 
handover process is considered, as depicted in Fig. I-1.1.5-3. 

 

 
(a) Early handover execution                      (b) Early handover preparation 

Fig. I-1.1.5-3: Prediction-based early handover 
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If a handover is executed preemptively based on predictions, as shown in Fig. I-1.1.5-

3(a), the UE can switch to a neighboring cell before the quality of the current serving cell 
declines. This approach also mitigates the risk of handover failure due to sudden 
degradation of the current cell’s quality. Conversely, since the execution of the handover 
depends on the prediction results, prediction errors could lead to improper handovers. 
To address these potential drawbacks, the use case illustrated in Fig. I-1.1.5-3(b) is also 
being considered. Handover preparation is initiated immediately after the prediction, 
but handover execution, such as handover command transmission, occurs only after the 
actual measurement captures the handover situation. Even in this case, the handover is 
completed earlier than in the legacy handover because the preparation is completed in 
advance. 

In 3GPP Release 19, the effectiveness of the above prediction capabilities is evaluated 
and analyzed through simulations. Based on the study results, 3GPP will then identify 
the specification impact of AI/ML for mobility, with detailed specifications to be 
discussed in Release 20. 

 
I-1.2.  Standardization in O-RAN 

The O-RAN Alliance aims to transform the way RAN is built by promoting openness, 
intelligence, and flexibility. Its mission is to drive the mobility industry towards an 
ecosystem of innovative, multi-vendor, interoperable, and autonomous RAN, with 
reduced cost, improved performance and greater agility. The Alliance has established 
technical working groups (WGs) focused on specific areas such as use cases, architecture, 
RAN intelligent controller (RIC), open fronthaul, cloudification, and security. The O-
RAN architecture and interface specifications are consistent with 3GPP architecture and 
interface specifications to the extent possible. 

In the O-RAN architecture [14], service management and orchestration (SMO) 
framework contains non-real-time RIC (Non-RT RIC) function which supports 
intelligent RAN optimization in non-real-time (i.e., greater than one second) by providing 
policy-based guidance. Non-RT RIC can leverage SMO services such as data collection 
and provisioning services of O-RAN nodes. Near real-time RIC (Near-RT RIC), O-CU-
CP, O-CU-UP, O-DU, and O-RU are the network functions for the radio access side. 
Near-RT RIC enables control and optimization of O-RAN (O-CU and O-DU) nodes and 
resources with near real-time control loops (i.e., 10 ms to 1 s), The Near-RT RIC collects 
near real-time RAN information from the O-RAN nodes and controls the behaviors of 
them on the basis of the policies and the enrichment data provided by the Non-RT RIC. 

Potential O-RAN use cases are discussed in O-RAN WG1 use case task group (UCTG) 
[15]. The use cases are described at a high level, emphasizing how the use case is enabled 
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by O-RAN architecture. These high-level use cases are prioritized within O-RAN, and 
selected use cases are further detailed in O-RAN WG1 UCTG and relevant O-RAN WGs 
to define the requirements for O-RAN components and their interfaces. 

One of the key innovations driven by O-RAN is the concept of intelligent RAN. By 
integrating AI/ML into the network, operators can improve performance, optimize 
resource allocation, and enhance user experiences. AI/ML workflow technical report (TR) 
was created within WG2, summarizing the deployment scenarios, procedures, 
requirements, and issues for AI/ML [16]. Based on the requirements outlined in this TR, 
“AI/ML in O-RAN” was established as a feature of MVP-C (Minimum Viable Plan 
Committee) to specify the architecture and interfaces necessary to realize the AI/ML 
lifecycle using RIC. In the following sections, we provide overview of the AI/ML 
framework in O-RAN and, several O-RAN use cases that utilize AI/ML in [15]. 

 
I-1.2.1.  AI/ML Framework 

This section provides the framework of AI/ML procedure in O-RAN [16]. The potential 
mapping relationship between the ML components and network functions, interfaces 
defined in O-RAN are illustrated in Fig. I-1.2.1-1. 

 

 

Fig. I-1.2.1-1: AI/ML framework 
 
The Non-RT RIC and Near-RT RIC support AI/ML workflow services. The following 

AI/ML services have been defined: 
- AI/ML training services: These services allow an AI/ML training service Consumer 

to request training of an AI/ML model by specifying training requirements (e.g., 
required data, model, validation criteria, etc.). 
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- AI/ML model management and exposure services: These services enable 
- AI/ML model registration / deregistration 
- AI/ML model discovery 
- AI/ML model change subscription 
- AI/ML model storage 
- AI/ML model training capability registration / deregistration (optional 

service) 
- AI/ML model training capability query (optional service) 
- AI/ML model retrieve 

- AI/ML model performance monitoring services: These services allow an authorized 
AI/ML performance monitoring service Consumer to request monitoring the 
performance of a deployed AI/ML model. The performance information of an AI/ML 
model is produced by an App within which the model is deployed or by AI/ML model 
inference service Producer performing the model inference. 

- AI/ML model inference services: These services allow an App to request and or to 
cancel the inference for a registered AI/ML model. The App needs to be authorized 
to request inference for registered AI/ML models. 

The ML functions are implementation variability components, there are many 
combinations of the deployment scenarios. The typical deployment scenarios that are 
considered for AI/ML framework in O-RAN are: 

- Deployment Scenario 1.1: AI/ML Continuous Operation / AI/ML Model 
Management / Data Preparation / AI/ML Training and AI/ML Inference are all in 
Non-RT RIC. 

- Deployment Scenario 1.2: AI/ML Continuous Operation / Data Preparation (for 
training) / AI/ML Training are in Non-RT RIC, AI/ML Model Management is out 
of Non-RT RIC (in or out of SMO). Data Collection (for inference) / Data 
Preparation (for inference) / AI/ML Inference is Near-RT RIC. 

- Deployment Scenario 1.3: AI/ML Continuous Operation / AI/ML Inference are in 
Non-RT RIC. Data Preparation / AI/ML Training / AI/ML Model Management are 
out of Non-RT RIC (in or out of SMO). 

- Deployment Scenario 1.4: Non-RT RIC acts as the ML training host for offline 
model training and the Near-RT RIC as the ML training host for online learning 
and ML inference host. 
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Fig. I-1.2.1-2: Deployment Scenario 1.1 
 

 
Fig. I-1.2.1-2: Deployment Scenario 1.2 

 

 
Fig. I-1.2.2: Deployment Scenario 1.3 
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Fig. I-1.2.1-5: Deployment Scenario 1.4 

 
I-1.2.2.  Massive MIMO Beamforming Optimization 

Massive MIMO (mMIMO) is a crucial technology for 5G, leveraging multi-antenna 
transmission and reception to improve power levels and enhance capacity by spatial 
multiplexing operations. In addition, advantages include advanced network 
management technologies like beam shaping, beam-based load balancing, optimized 
beam mobility, adaptive cell coverage areas. In order to optimize networks, fully digital 
beamforming (BF) methods are to be employed for below 6 GHz frequency. Grid of Beams 
(GoB) is a BF method which aims at selectively covering regions of interest with a 
suitable subset of radio beams. Beam-based mobility robustness optimization is a BF 
method enhancing beam specific mobility performance, e.g., by adding beam specific 
individual offsets. 

The high number of configuration parameters, the amount of measurement input data, 
the complexity, pro-activeness as well as non- and near-real time requirements suggest 
the application of AI/ML techniques. In this use case, three optimization loops for 
mMIMO BF were proposed. 

1) Non-RT massive MIMO GoB beamforming optimization 
The concept of Non-RT BF optimization is shown in Fig. I-1.2.2-1. Non-RT RIC 
hosts an application with long-term analytics function (= ML training), whose task 
is to collect, process and analyze antenna array parameters, cell performance KPIs, 
UE mobility / spatial density data, traffic density data, interference data and BF 
gain / beam reference signal received power (RSRP) and minimization of drive tests 
(MDT) measurement data. The output of the BF optimization inference can be 
optimized BF configuration, number of beams, beam elevation, beam horizontal & 
vertical widths and power allocation of beams. 
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Fig. I-1.2.2-1: Non-RT BF optimization 

 
2) Near-RT massive MIMO beam-based Mobility Robustness Optimization (bMRO) 

The concept of bMRO is shown in Fig. I-1.2.2-2. Non-RT RIC hosts an application 
with long-term analytics function (= ML training), whose task is to collect and 
analyze underlying GoB configuration, if GoB configuration exists, beam mobility 
and failure statistics, L1 / L2 RSRP values, potential source-target beam pairs. 
Near-RT RIC hosts an xApp with bMRO optimization function (= ML inference), 
whose task is to monitor potential source-target beam pairs and optimize beam 
mobility for scheduling by managing user-beam paring. The output of the bMRO 
optimization function can be adjusted offsets for candidate source-target beam 
pairs for beam mobility. 

 

 
Fig. I-1.2.2-2: Near-RT beam-based mobility robustness optimization 
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3) Near-RT massive MIMO Beam Selection Optimization (BSO) 

The concept of BSO function is shown in Fig. I-1.2.2-3. Non-RT RIC hosts an 
application with long-term analytics function (= ML training), whose task is to 
collect and analyze underlying GoB configuration, if GoB configuration exists, 
beam mobility and failure statistics, L1 / L2 RSRP values, potential source-target 
pairs. Near-RT RIC hosts an xApp with BSO function (= ML inference), whose task 
is to monitor potential source-target beam pairs, and to optimize beam mobility for 
scheduling by managing user-beam pairing. The output of the BSO optimization 
function can be adjusted offsets for candidate source-target beam pairs for beam 
mobility. 

 

 
Fig. I-1.2.2-3: Near-RT BSO function 

 
I-1.2.3.  RAN Slice SLA Assurance 

The 3GPP standards architected a sliceable 5G infrastructure which allows creation 
and management of customized networks to meet specific service requirements that can 
be demanded by future applications, services and business verticals. Such a flexible 
architecture needs different requirements to be specified in terms of functionality, 
performance and group of users which can greatly vary from one service to the other. 
The 5G standardization efforts have gone into defining specific slices and their Service 
Level Agreements (SLAs) based on application / service type. Since network slicing is 
conceived to be an end-to-end feature that includes the core network, the transport 
network and the RAN, these requirements should be met at any slice subnet [17]. 

The requirements of network slicing in RAN include customizable network capabilities 
such as the support of very high data rates, traffic densities, service availability and very 
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low latency. These capabilities are always provided based on an SLA between the mobile 
operator and the business customer, which brought up interest for mechanisms to ensure 
slice SLAs and prevent its possible violations. O-RAN’s open interfaces and AI/ML-based 
architecture will enable such challenging mechanisms to be implemented and realize the 
network slicing in an efficient manner. This use case was proposed to clarify necessary 
mechanisms and parameters for RAN slice SLA assurance. 

As shown in Fig. I-1.2.3-1, RAN slice SLA assurance scenario involves Non-RT RIC, 
Near-RT RIC, E2 nodes and SMO interaction. The scenario starts with the retrieval of 
RAN specific slice SLA / requirements (possibly within SMO or from NSSMF depending 
on operator deployment options). Based on slice specific performance measurements 
from E2 nodes, Non-RT RIC and Near-RT RIC fine-tune RAN behavior aligned with O-
RAN architectural roles to assure RAN slice SLAs dynamically. Non-RT RIC monitors 
long-term trends and patterns for RAN slice subnets’ performance and employs AI/ML 
methods to perform corrective actions through SMO (e.g., reconfiguration via O1) or via 
creation of A1 policies. Non-RT RIC can also construct / train relevant AI/ML models 
that will be deployed at Near-RT RIC. A1 policies possibly include scope identifiers (e.g., 
S-NSSAI) and statements such as KPI targets. On the other hand, Near-RT RIC enables 
optimized RAN actions through execution of deployed AI/ML models in near real-time 
by considering both O1 configuration (e.g., static RRM policies) and received A1 policies, 
as well as received slice specific E2 measurements. 

 

 

Fig. I-1.2.3-1: Slice SLA assurance 
 

I-1.2.4.  Energy Saving 
Energy saving (ES) of the RAN is an important topic for network operators. ES for 

legacy and 5G networks can be carried out using manual configuration in different 
network layer and in different time scales. However, due to the varying nature of traffic 
load and to user mobility, the optimization of energy consumption of the RAN is complex. 
There is a risk that RAN equipment consume much energy while serving low traffic, or 
even no traffic at all. 
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O-RU is responsible for the major part of energy consumption in the mobile network. 
3GPP defines both centralized and distributed ES features [18], which are mainly 
targeting intra- or inter-RAT cell on/off switching, The ES use case was proposed to 
leverage on O-RAN AI/ML services and open interfaces in order to introduce optimized 
ES solutions involving switching off/on of different network components at different time 
scale. The ES use cases is divided into three sub use cases. 

1) Carrier and cell switch off/on ES 
Time scale: non-real-time for both control and controlled system. The feature aims 
at reducing O-CU / DU / RU power consumption by switching off/on one or more 
carriers or a cell of a given technology. AI/ML assisted solutions in the Non-RT RIC 
can be used to control the traffic load of the carriers and the cell, and to 
automatically decide when to switch off/on one or more carriers or a cell using O1 
and/or open fronthaul M-plane parameter configurations. Off/on switching is 
accompanied with adequate traffic steering, guided by policies, to ensure service 
continuity and quality of service. 

2) RF channel switch off/on ES 
Time scale: non- or near real-time are possible for both control and controlled 
system. This feature aims at reducing power consumption of O-RU with massive 
MIMO deployment by switching off/on certain RF channels. Using AI/ML assisted 
solutions, rApp or xApp will trigger switching off/on certain RF channels, based on 
traffic information such as load, user location and mobility. As example, one can 
switch off 32 out of 64 RF channels in a digital mMIMO architecture or reduce the 
number of layers and/or number of multi-user scheduled UEs in a hybrid 
architecture. The O-RU reconfiguration can be performed using the open fronthaul 
M-plane from E2 node or SMO. 

3) Advanced sleep mode ES 
Time scale for control: near real-time. Time scale for the controlled system: real-
time and near real-time. This feature is expected to reduce power consumption by 
partially switching off O-RU components. Using multi-dimensional data, e.g., 
traffic load, user service type, energy efficiency measurements, etc., the Near-RT 
RIC can configure cell parameters, such as the SSB periodicity needed for the 
operation of advanced sleep modes. 
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I-2.  Introduction of AI and Digital Twin Technologies for 6G 

Tetsuya Yamamoto, Panasonic Holdings Corporation 
Takahiro Yamazaki, NTT Network Innovation Laboratories, NTT Corporation 

 
I-2.1.  AI for Signal Processing / Air-interface 

In recent years, with the increasing complexity of next-generation wireless 
communication systems such as Beyond 5G/6G, environments with numerous 
interdependent parameters that are difficult to manage with conventional methods have 
become a reality. This is driven by the challenge of achieving high-precision and real-
time performance across a variety of communication functions, including channel 
estimation, beamforming, positioning, and resource allocation in time, frequency, space, 
and power, etc. In response, AI/ML technologies are expected to provide groundbreaking 
solutions by solving complex nonlinear mapping problems and analyzing vast amount of 
data. 

In wireless signal processing at the physical layer, efforts are underway to replace 
conventional processes such as channel coding, synchronization, channel estimation, 
beamforming, and transmit power control with AI/ML models like deep neural networks. 
For example, AI/ML-based optimization are suggested to contribute to reduce 
computational complexity and improved accuracy in signal detection, blind channel 
estimation and demodulation using minimal reference signals, and the decoding of 
advanced error-correcting codes. As a result, optimal signal processing is expected to be 
maintained even in the face of environmental variations, noise, and interference [1 – 3]. 

As shown in Section I-1.1, there are ongoing standardization efforts to exploit AI/ML 
in the air interface. The 3GPP has been studying the application of AI/ML to NR air 
interface since Release 18, In Release 19, the specification of CSI prediction, beam 
management, and positioning are being specified, and the feasibility of CSI compression 
is being studied. 

Furthermore, the concept of an AI-native air interface represents an evolution from 
traditional, fixed air interface protocols toward new communication methods that 
dynamically adapt to the constraints and variability of the wireless environment as well 
as to hardware imperfections. As a first step, a hybrid system combining AI/ML and non-
AI/ML processing blocks such as signal detection, channel estimation, and symbol 
mapping at the physical layer is expected. Looking ahead, it is conceivable that AI/ML 
models integrating multiple functions, such as joint channel estimation, equalization, 
and de-mapping, will emerge. With advancements in hardware acceleration and 
improvements in the reliability of AI/ML models themselves, research is moving towards 
the realization of system composed entirely of AI/ML components. 
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Moreover, in high-frequency ranges such as millimeter-wave and terahertz bands, RF 
impairments, such as the nonlinearity of power amplifiers (PAs), frequency selectivity, 
IQ imbalance, direct current (DC) offset, carrier leakage, and phase noise, have a 
significant impact on system performance. For the nonlinear distortion of PA, nonlinear 
compensation techniques, such as digital predistortion employing AI/ML, have attracted 
considerable attention. By utilizing neural networks, high compensation effects are 
anticipated even for complex nonlinear distortions that conventional polynomial-based 
models cannot adequately express, although new challenges in terms of computational 
resources and hardware implementations have also surfaced. Technologies that 
compensate for multiple RF impairments by utilizing AI/ML such as deep neural 
networks have also attracted attention. 

These advances in AI/ML technologies are exerting a profound influence on the overall 
design of wireless communication systems, leading to the establishment of performance 
requirements such as training / inference accuracy and latency KPIs from both 
communication and AI/ML perspective. in 6G networks, in order to meet these KPIs, 
support for large-scale distributed learning and real-time inference will be essential, 
along with the integrated system design that transcends traditional boundaries between 
communication and AI. 

In summary, AI/ML is set to revolutionize conventional signal processing and air 
interface paradigms, serving as the key technology to achieve dynamic and highly 
efficient optimization in complex wireless environments. It is poised to become a central 
component of future Beyond 5G/6G systems. 

 
I-2.2.  AI for RAN 

AI/ML technologies are expected to be used for operations, administration and 
maintenance (OAM) and dynamic control of RAN. 

For OAM of RAN, instead of a manual parameter configuration, an automatic 
parameter configuration by AI/ML technologies is proposed by [4, 5]. It will reduce 
human operation resources and human errors. 

For dynamic control of RAN, dynamic traffic offloading, resource allocation and power 
control by AI/ML technologies are proposed by [6, 7]. It will improve quality of 
communication and power efficiency. 

On the other hand, as described in previous section (I-1-2), the architecture of AI/ML 
for RAN is standardized in O-RAN Alliance [8, 9]. With O-RAN RIC, application-aware 
RAN control such as application-based resource allocation will be enabled. 

Additionally, AI/ML technologies are used for system failure detection [10]. With 
AI/ML, the threshold for failure detection can be dynamically configured, and it makes 
the probability of failure detection higher. 
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In summary, AI/ML technologies are expected to reduce operation costs of RAN, to 
improve quality of communication of RAN. Following 5G system, it will also become 
important for Beyond 5G and 6G systems. 

 
I-2.3.  AI for Radio Propagation / Digital Twin 

AI/ML technologies are expected to evolve radio propagation and radio simulation in 
digital virtual environments such as digital twin. 

For radio propagation, as described in [11, 12], AI/ML technologies can be applied for 
channel parameter estimation, channel modelling, channel prediction and LOS / NLOS 
identification. AI/ML technologies can make ML models with multimodal values such as 
measured received signal strength indicator (RSSI), geographical information, camera 
images, states of UEs and etc. Using this ML model, it is expected to support more 
flexible radio propagation situations and scenarios for Beyond 5G and 6G. 

For radio simulation in digital twin, AI/ML technologies can reduce computational cost 
while maintaining simulation accuracies. In [13], for real-time digital twin system, a ML 
model trained with ray tracing results, geographical data and rough propagation model 
is proposed. This paper shows that proposed model reduces computational cost while 
maintaining accuracies compared to conventional ray tracing. Not only this example, but 
also many AI/ML approaches have been investigated to implement more realistic and 
cost-effective radio simulation. 

In summary, AI/ML is a promising approach to make close radio propagation model to 
the real one. It should accelerate the development of digital twin and cyber physical 
system.   

 
I-2.4.  Network Architecture for AI/ML Usage in RAN 

Network architecture for using AI/ML for RAN is under consideration. 
Conventionally, AI/ML application functions are placed in core network or cloud 

infrastructure. However, it increases the latency due to AI/ML processing is carried out 
in a location farther away than the cellular area provided by the RAN. To resolve this 
problem, placing AI/ML application functions to RAN side, such as MEC or computing 
infrastructure for vRAN, is proposed [14]. 

Additionally, for 6G, a network architecture which distributes AI/ML application 
functions to core network, RAN, user devices and all of the network functions is proposed. 
It will enable an adaptive computing resource allocation for AI/ML in end-to-end 
communications. With this architecture, more AI/ML applications will be effectively 
utilized in 6G systems. 
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II.  Recent Activities of AI/ML and Digital Twin in Japan 

This section introduces leading-edge R&D efforts on AI/ML and digital twin for Beyond 
5G/6G in Japan, with the aim of accelerating R&D to advance future communications 
and services. This white paper on AI/ML and digital twin technologies includes 19 papers 
categorized into 4 typical technological categories, as shown below: 

AI for signal processing / air interface 
1. Scalable AI/ML for radio cellular access 
2. Study on training collaboration at UE- / network-side for CSI compression with 

two-sided AI/ML model 
3. Proof-of-concept for AI-native air interface toward 6G 
4. Neural network-based digital pre-distortion for wideband power amplifier using 

DeepShift 
5. AI calibration network under hardware limitations 
6. Performance requirements and evaluation mythology for AI and communication 

in 6G 
AI/ML for RAN 
7. Study on AP clustering with deep reinforcement learning for cell-free massive 

MIMO 
8. Cross-layer access control techniques using AI 
9. AI-based application-aware RAN optimization 
10. AIOps for autonomous networks 
11. Logic-oriented generative AI technology for autonomous networks 
12. In-network learning for distributed RAN AI ~Distributed LLMs via latent 

structure distillation~ 
AI/ML for radio propagation and digital twin 
13. Throughput prediction technology for 28-GHz channels using physical space 

information 
14. AI/ML-based radio propagation prediction technology 
15. AI-based radio propagation modeling for wireless emulator 
16. 6G simulator utilizing future prediction control technology based on AI/ML 
17. Optimization of 6G radio access using digital twin 
18. Digital-twin for and by Beyond 5G 
Network architecture for AI/ML usage in RAN 
19. Task-oriented 6G native-AI network architecture 
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II-1.  Scalable AI/ML for Radio Cellular Access 

Andres Arjona, Nokia 
Hideaki Takahashi, Nokia 

 
Abstract— Wireless networks are expected to move towards self-sustaining networks 

in 5G-Advanced and in 6G, where Artificial Intelligence (AI) and Machine Learning (ML) 
play a critical role in maintaining high performance in dynamically changing 
environment.  AI/ML solutions that operate separately at the device or network side, or 
jointly on both will emerge. Similarly, lifecycle management procedures will be needed 
to enable interoperable automation in the radio, providing a framework with the 
necessary tools for deploying and operating ML solutions in radio at scale. 
 
II-1.1.  Introduction 

We are at the beginning of a revolution in cellular networks as Artificial Intelligence 
(AI) and Machine Learning (ML) for the air interface become integral to cellular 
networks. Although AI/ML is already part of 5G systems, it is currently mostly applied 
to network automation and proprietary Self Organizing Networks (SON) solutions. With 
the advent of 5G-Advanced, and further with 6G, we will see an advanced 
implementation of AI/ML in the RAN and radio interface. The potential benefits of 
AI/ML in the network will be significant. They will boost the performance of the radio 
interface, reduce power consumption, greatly improve the end user experience, and help 
find better performing network parametrization faster. Further, these solutions must be 
both economically and technically feasible to scale. 

In this paper, we present discussion on the importance of standardizing lifecycle 
management procedures relevant to AI/ML, followed by an example of an AI/ML based 
reinforcement learning solution for uplink power control in cellular networks. 
 
II-1.2.  Lifecycle Management for AI/ML 

AI/ML solutions for the air interface [3] can be one-sided, where a given feature 
operates at either the network or device side (e.g., beam prediction, positioning), or two-
sided, where the solution operates jointly in both simultaneously (e.g., device channel 
feedback compression). In this latter example, the ML algorithm is applied at both the 
device and network side for compression and decompression of the channel state 
information. 
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Fig. II-1.2-1: One-sided and two-sided AI/ML solutions in the mobile network air 
interface [3] 

 
Standardization efforts are essential to ensure that different vendors’ ML 

implementations and algorithms for networks and devices can work together in a variety 
of scenarios. Thus, a holistic framework needs to be developed in 3GPP for 5G-Advanced, 
addressing both kinds of AI/ML solutions (one-sided and two-sided) supporting control-
plane signaling between the network and the device for correct and controllable 
operation. This framework shall be applicable to any use case in the air interface, and 
also be the foundation for the AI-native air interface in 6G.  

Specifically, Lifecycle Management (LCM) procedures to enable interoperable 
automation mechanisms in the radio are needed. Including procedures for data collection, 
development and testing, deployment, and operation and monitoring of ML solutions. 
This framework will provide operators, devices, and network vendors the required tools 
for operating ML solutions for radio at scale with guaranteed interoperability. 

Data needs to be collected for training, inference and performance monitoring of the 
ML solutions. Hence, the framework must ensure that operators have control about how, 
what, when, and for which use cases data is collected responsibly, and in compliance 
with local data and privacy regulations. However, a challenge for the ML training data, 
is regarding scalability and access to the data needed in a controlled and efficient manner. 
To this end, the following principles should be followed for training data collection 
procedures: 

• Ensure user security and privacy 
• Make data accessible by the subscribed parties 
• Operator needs to be aware of and control data collection 
• Minimize additional air-interface traffic 
• Design for extensibility and future evolution 
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II-1.3.  Deep Reinforcement Learning for Uplink Power Control 

One important trend in ongoing 6G research is the paradigm shift toward self-
sustainable networks. To this purpose AI and ML technologies can become key 
components in maintaining network performance. 

Reinforcement Learning (RL) is one field in machine learning for decision making that 
can be applied to cellular networks. Use of RL methods can enable use cases in wireless 
communications and radio resource management which are otherwise difficult due to the 
complex nature of the radio environment.  In RL, the objective is to have an agent have 
freedom to learn a solution, where learning of the decisions is carried out via an arbitrary 
function that maximizes a “reward”. Throughout this process the agent learns from the 
reward feedback signal, which reinforces the desired actions and penalizes the undesired 
ones. The agent interacts with the environment by taking an action based on the 
observed environment state.  

The research work in [1], shows RL applied to uplink power control. Outer-Loop Power 
Control (OLPC) in 5G networks relies on tuning two primary parameters, the normalized 
transmit power density P0, and the path-loss (PL) compensation factor αpl. Optimization 
of these parameters is known to be of great importance to reach high uplink performance. 
One approach is to optimize uplink power control via an RL agent for each cell, 
controlling both P0 and αpl parameters within a single neural network rather than 
focusing on P0 alone. However, mitigation actions are needed to cope with behavior 
resulting from multi-agent RL, such as high-power consumption from uncoordinated 
competition among gNBs in the network trying to maximize their own performance. To 
mitigate these issues, cooperative time synchronized reward mechanisms and sharing of 
state information between nearby RL agents can be implemented. Hence, achieving a 
common goal across multiple gNBs. 

The solution in [1] is based on Double Deep Q Network (DDQN), where soft updates 
take place at every training occasion. In this solution, the neural network’s output layer 
is divided in two dimensions, one dedicated for P0, and the other for αpl indices (See Fig. 
II-1.3-1). 3GPP defines 114 values for P0 and 8 values for αpl resulting in 912 possible 
combinations. 
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Fig. II-1.3-1: Multi-Action Neural Network with Two Output Dimensions [1] 

 
OLPC parametrization is the problem of finding a balance between the signal to 

interference plus noise ratio (SINR) and the number of resource blocks needed per 
transmission. If the gNB agents are only aware of their own parametrization and 
performance, such uncoordinated approach leads to a competition where the agents 
increase their transmission power to compensate the interference created by their 
neighboring agents. Hence, the agents should be provided with information that allows 
learning of power settings between gNBs, and that state information is shared between 
neighbors at each training step. Likewise, the reward is the sum throughput per utilized 
resource blocks over the closest neighbors including the agent’s own cell. 

The simulation result in [1] (See Fig. II-1.3-2) shows that maximizing the 
neighborhood reward alone may result in unfair user and cell throughput, as power 
allocations can become widespread. Thus, an alternative is to carry out averaging of the 
ML-suggested actions, which yields a fairer and more uniform power allocation between 
cells. Similarly, co-operation is shown to be essential in multi-agent power control, as 
the co-operation range affects significantly the results. If the co-operation range is too 
high, it leads to noisy rewards which impairs learning, while without co-operation gains 
collapse and DDQN is unable to learn the full effects of its actions.  

Additionally, when evaluated with the exhaustively searched best configuration 
common across all simulation realizations (referred as golden baseline), simulation 
results show that it is possible to achieve ~10% gain in cell throughputs in average, with 
the gain being rather fairly distributed over all UEs within the simulation, showing 
further benefit over traditional parametrization approaches. 
 

1

N
C  -1

N
C 2...

1251 3

12N
P0

N
P0 

+1

N
P0 

+N
α -1

N
P0 

+N
α

50 4

...

...

...

1st output dimension (P0 values)2nd output dimension (α values)

Input (one value per cell)



 
 
 

 39 

 
Fig. II-1.3-2: Simulation results: (left) Average Cell Throughout Gain, where N=2 
refers to learning both P0 and αPL output dimensions; (right) Windowed User 

Throughput Distribution of with different offered loads [1] 
 
II-1.4.  Conclusion 

AI/ML-based solutions have the potential to further extend the boundaries of 
performance of the air interface. However, to deploy AI/ML solutions at scale, 
standardization of LCM framework is needed. Hence, paving the way with work in 5G-
Advanced for AI-native 6G, where AI/ML is considered from the start as a key design 
principle of the system. 

Similarly, 6G development must specify enablers for more dynamic reconfiguration of 
system information parameters. Likewise, more dynamic power control as well as other 
machine learning applications, such reinforcement learning, bring performance beyond 
that of common parameters set over the network. Further, it could be expected that such 
machine learning algorithms will turn to be essential parts of 6G making the paradigm 
shift towards self-sustained networks, where multiple dependent parameters and inter-
connected features must be tuned simultaneously on the fly. 
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II-2.  Study on Training Collaboration at UE- / Network-side for CSI Compression with 
Two-sided AI/ML Model 

Tetsuya Yamamoto, Yasuaki Yuda, Hidetoshi Suzuki 
Panasonic Holding Corporation 
Maki Sugata, Tadashi Yoshida 

Panasonic System Networks R&D Lab. Co., Ltd. 
 

Abstract— In the 3rd Generation Partnership Project (3GPP), the application of 
artificial intelligence / machine learning (AI/ML) to the radio interface has been studied 
since Release 18. Channel State Information (CSI) compression is one of use cases 
studied in 3GPP. CSI compression involves a two-sided model where inference 
processing using AI/ML models is executed on both the user equipment (UE)-side and 
the network (NW)-side, which will be used as a starting point for studying two-sided 
AI/ML solutions in 6G. This paper provides an overview of training collaboration for CSI 
compression using a two-sided model and reports on the performance of several training 
collaboration approaches. 
 
II-2.1.  Introduction 

In the 3GPP, the application of AI/ML to the radio interface has been studied since 
Release 18 [1]. In Release 19, the actual standardization work is on the progress to 
realize use cases, such as beam management, positioning, and CSI prediction, where the 
introduction of AI/ML technologies would be effective, based on the study from Release 
18 [2]. In addition, use case that were not concluded in Release 18 such as CSI 
compression and new use cases are also to be studied in Release 19 [3, 4]. 

CSI compression involves a two-sided model where inference processing using AI/ML 
models is executed on both the UE-side and the NW-side, and how to coordinate training 
between the UE-side and the NW-side is being studied. 

In this paper, we provide the overview of the training collaboration for CSI 
compression using two-sided model and report on the performance of several training 
collaboration approaches being considered in 3GPP Release 19. 
 
II-2.2.  CSI Compression with Two-sided AI/ML Model 

In downlink transmission, the base station (BS) needs to know the reception quality 
and propagation channel information of the UE to perform resource allocation and 
multiple-input multiple-output (MIMO) precoding. In the downlink transmission in new 
radio (NR) interface, the UE measures the reception quality and propagation channel 
state from the reference signal transmitted by the BS and reports the measurement 
results to the BS. This is the reporting of CSI from the UE. 
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CSI reporting overhead is a challenge when the number of antennas and frequency 
resources is increased. To address this overhead, the compression of CSI using AI/ML is 
being considered. Specifically, as shown in Fig. II-2.2-1, the UE compresses the CSI in the 
spatial and frequency domains using an AI/ML model, and reports the compressed 
information to the BS as CSI report. The BS then uses an AI/ML model on the NW-side 
to reconstruct the original CSI from the compressed information, reported by the UE. 
AI/ML models such as convolutional neural networks (CNN) and Transformers can be 
utilized for this purpose [5, 6]. In the studies conducted in Release 18, a reduction in CSI 
overhead of approximately 10% to 60% was observed compared to traditional CSI 
reporting methods i.e., not using AI/ML [7]. 

 

Fig. II-2.2-1: CSI compression with two-sided AI/ML model 

 
II-2.3.  Training Collaboration at UE-side and NW-side 

CSI compression involves a two-sided model where inference processing using AI/ML 
models is executed on both the UE-side and the NW-side. One of the challenges in 
considering the two-sided model is how to coordinate training between the UE-side and 
the NW-side. With this context, several types of training that involve different degrees of 
collaboration between UE-side and the NW-side have been studied in terms of inter-
vendor collaboration complexity, performance, maintainability, and standardization 
impact. In Release 19, in order to alleviate/resolve the issue related to inter-vendor 
training collaboration of AI/ML-based CSI compression using two-sided model, the 
following three directions has been studied. 
 Direction A: Sharing parameters/dataset that enables UE-side offline engineering 
 Direction B: Sharing NW-side encoder parameter to UE-side for UE-side inference 

directly with on-device operation 
 Direction C: Fully standardized reference model(s) and parameters with specified 

encoder and/or decoder part 
In addition, for Direction A, two types of information sharing have been studied. 
 Direction A-1: Encoder parameter exchange, with target CSI 
 Direction A-2: Dataset exchange (i.e., target CSI and CSI feedback) 
Direction A-1 is the training collaboration option with standardized reference model 

structure and parameter exchanges with target CSI between NW-side and UE-side. 
Parameters and target CSI received at the UE-side goes through offline engineering at 
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the UE-side (e.g., UE-side over-the-top (OTT) server). Offline coordination between either 
NW-side and UE-side or intra-vendor entities is alleviated or not necessary if the model 
structure can be specified, and parameter exchange is via standardized signaling. One of 
potential issues is how the mismatch between NW-side data distribution and UE-side 
data distribution impacts on the performance. For example, AI/ML models trained at NW-
side may not reflect data distribution with respect to UE-specific conditions, sush as UE 
antenna configuration, implementation-specific demodulation algorithms, etc. The AI/ML 
model working environment of these conditions should be ideally same between the 
training and inference. We evaluate the performance impact due to the mismatch 
between NW-side and UE-side data distribution on Direction A-1 in Section 4.1 and 
showed that Direction A-1 can address the performance impact due to NW / UE data 
distribution mismatch with respect to UE-specific conditions. 

Direction A-2 is the training collaboration option with dataset exchange between NW-
side and UE-side. The exchanged dataset includes target CSI and CSI feedback. This 
option allows each UE/chip set vender of UE-side designs their algorithm with the help 
of NW-specific information. Since dataset is delivered to UE-side instead of model 
structure and/or parameters, there is uncertainty on the reference model expression. 
Therefore, combination with Direction C may be necessary to alleviate the burden of 
inter-vendor collaboration and/or offline engineering to align model structure between 
NW-side and UE-side. 

Direction B is the training collaboration option with standardized reference model 
structure and parameter exchanges between NW-side and UE-side. In addition, 
parameters received at the UE are directly used for inference at the UE without offline 
engineering, with on-device operations. For Direction B, UE-side model switching only 
includes the updating parameters, while model training is not needed. On the other hand, 
this direction may not allow device specific optimization compared to Direction A. The 
potential issue would be how to provide same working environment, i.e., the 
parameters/conditions that shall be considered for inference encoder training should be 
aligned between NW and UE, resulting in potential inter-vendor collaboration effort or 
more standardization effort. 

In Direction C, reference AI/ML model is standardized with the actual implementation 
of AI/ML models on the UE-side and NW-side based on these reference AI/ML models. It 
can eliminate the inter-vendor collaboration complexity if feasible for specification. One 
of issues is reference AI/ML models trained using statistical channel models may not be 
suitable for real field environments. We evaluate the performance impact due to 
mismatch between the distribution of the dataset used for reference model training, UE-
side data distribution, and NW-side data distribution on Direction C in Section 4.2 and 
showed that fully specified model in Direction C may have limited performance in the 
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field, but the performance may be improved at least if either side train their part of model 
using field data. 

Table II-2.3-1 are summarized our views on the comparison of directions. 

Table II-2.3-1: Comparison of directions 
 Inter-vendor 

collaboration 
Performance Maintainability  Standardization 

Direction 
A-1 

Feasible, or 
complexity is 
alleviated. 

Good Allowing UE-side and NW-
side to develop/update 
models separately 

Feasible 

Direction 
A-2 

Complexity is 
alleviated.  

May be worse without backbone 
structure alignment 

Allowing UE-side and NW-
side to develop/update 
models separately 

Feasible 

Direction 
B 

Large 
complexity to 
align the same 
working 
environment 

Unclear whether the 
performance impact due to NW-
side data distribution and UE-
side inference data distribution 
mismatch can be addressed. 

Only NW-side can 
develop/update the model. 
Not feasible for UE-side 

Feasible but more 
standardization 
effort 

Direction 
C 

Feasible Limited compare with other 
directions 

Allowing UE-side and NW-
side to develop/update 
models separately 

Feasible 

 
II-2.4.  Performance Evaluation 
II-2.4.1.  Direction A-1 

Assuming that the reference model structure is standardized, we consider the 
following procedure for NW-side and UE-side training as shown in Fig. II-2.4.1-1. 
 Step 1: NW-side trains the encoder (which is not used for inference) and decoder 

jointly. 
 Step 2: After NW-side training is finished, NW-side shares UE-side with encoder 

parameters of the trained encoder model and target CSI (Dataset A) used in the 
NW-side training. 

 Step 3: UE-side first develop a nominal decoder against the exchanged encoder 
using encoder parameters and target CSI exchanged from NW-side. 

 Step 4: UE-side develops actual encoder against the nominal decoder using the 
target CSI measured at UE-side (Dataset B). 

In order to investigate the performance impact on UE-side / NW-side data distribution 
mismatch with respect to UE-side additional condition, we consider NW-side data 
(Dataset A) and UE-side data (Dataset B) are mismatched in terms of UE-side antenna 
configuration. Dataset A and Dataset B are constructed as follows. Detailed parameters 
for evaluation conditions are shown in Table II-2.4.1-1. 
 Dataset A: 3 types of UE antenna configurations, (𝑀𝑀, 𝑁𝑁, 𝑃𝑃, 𝑀𝑀𝑔𝑔, 𝑀𝑀𝑔𝑔; 𝑀𝑀𝑝𝑝, 𝑁𝑁𝑃𝑃) = (1, 2, 

2, 1, 1, 1, 2), (2, 1, 2, 1, 1, 2, 1), and (2, 2, 1, 1, 1, 2, 2) are assumed. 
 Dataset B: Only 1 type of UE antenna configuration, (𝑀𝑀, 𝑁𝑁, 𝑃𝑃, 𝑀𝑀𝑔𝑔, 𝑀𝑀𝑔𝑔; 𝑀𝑀𝑝𝑝, 𝑁𝑁𝑃𝑃) = 

(1, 2, 2, 1, 1, 1, 2) is assumed. 
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Fig. II-2.4.1-1: Training collaboration procedure in Direction A-1 

Table II-2.4.1-1: Evaluation assumptions  
Parameter Value 
Scenario Dense urban macro 
Frequency range 2 GHz 
Inter-BS distance 200 m 
Channel model According to TR 38.901 
Antenna setup and port layouts at gNB 32 ports: (8, 8, 2, 1, 1, 2, 8), (𝑑𝑑𝐻𝐻, 𝑑𝑑𝑉𝑉) = (0.5, 0.8)𝜆𝜆 
Antenna setup and port layouts at UE 4 Rx: 

For Dataset S and A: (1, 2, 2, 1, 1, 1, 2), (2, 1, 2, 1, 1, 2, 1), and (2, 
2, 1, 1, 1, 2, 2), (𝑑𝑑𝐻𝐻, 𝑑𝑑𝑉𝑉) = (0.5, 0.5)𝜆𝜆 
For Dataset B: (1, 2, 2, 1, 1, 1, 2), (𝑑𝑑𝐻𝐻, 𝑑𝑑𝑉𝑉) = (0.5, 0.5)𝜆𝜆 
Note: Antenna configuration is indicated as (𝑀𝑀 , 𝑁𝑁 , 𝑃𝑃 , 𝑀𝑀𝑔𝑔 , 𝑀𝑀𝑔𝑔 ; 𝑀𝑀𝑝𝑝 , 𝑁𝑁𝑃𝑃 ), 
where 𝑀𝑀 and 𝑁𝑁 are the number of vertical, horizontal antenna elements 
within a panel, 𝑃𝑃 is number of polarizations, 𝑀𝑀𝑔𝑔 is the number of panels in 
a column, 𝑁𝑁𝑔𝑔  is the number of panels in row; and 𝑀𝑀𝑃𝑃  and 𝑁𝑁𝑝𝑝  are the 
number of vertical, horizontal TXRUs within a panel and polarization. 

BS antenna height 25 m 
UE antenna height and gain Follow TR 36.873 [8] 
Numerology Slot / non-slot 14 OFDM symbol slot 

SCS 15 kHz 
Simulation bandwidth 10 MHz 
UE distribution Dataset S: 80 % indoor (3 km/h), 20 % outdoor (30 km/h) 

Dataset A, B: 100 % outdoor (30 km/h), various LOS/NLOS ratios 
(100:0, 40:60, and 20:80) for outdoor UEs are considered. 

Feedback assumption Ideal 
Channel estimation Ideal 
Rank number 1 
CSI compression model Transformer [5, 6] 
Dataset size for training and inference For Direction A-1 

 300,900 for NW-side training, UE-side nominal decoder 
training 

 150,450 for UE-side encoder training 
 39,900 for inference 
For Direction C 
 300,900 for training Dataset S 
 150,450 for training Dataset A and B 
 39,900 for inference 

Encoder
(trainable)

Decoder
(trainable)

Training
(Step 1)

Encoder_A Decoder_A

Encoder_B Decoder_A

Encoder and decoder generated in Step 4 and Step 1
are used on UE-side and NW-side, respectively.

Dataset A
(NW-side)

Vin

VFB
Vout

Parameter sharing {WENC, Vin}
(Step 2)

Decoder
(trainable)

Encoder_A
(Frozen)

Training
(Step 3)

Dataset A 
(Vin)

Nom_Decoder
(Frozen)

Encoder_A
(Tranable)

Training
(Step 4)

Dataset B
(UE-side)

Nom_DecoderEncoder_B
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We consider the following three cases. 
 Case 1A: An encoder-decoder pair is trained in Dataset B. This serves as an upper 

bound. 
 Case 1B: NW-side trains a decoder based on Dataset B, and UE-side trains an 

encoder based on Dataset B. 
 Case 2: NW-side trains a decoder based on Dataset A, and UE-side trains an 

encoder based on Dataset B. 
 Table II-2.4.1-2 shows the squared generalized cosine similarity (SGCS), which 

represents the similarity between the reconstructed and original CSI. From the 
comparison between Case 1A and Case 1B, Direction A-1 can achieve almost the 
same performance as joint training if data distribution between NW-side offline 
training and UE-side offline training is aligned. From the comparison between 
Case 1 and Case 2, Case 2 cause performance loss due to data distribution 
mismatch between Dataset A and Dataset B. On the other hand, in terms of UE-
specific condition of antenna layout/configuration, the performance loss is small if 
Dataset A for NW-side training includes Dataset B. 

Table II-2.4.1-2: Performance of Direction A-1 
Case Notes SGCS by inference on Dataset B 

(Performance loss from upper bound) 
LOS: 100% LOS: 40% LOS: 20% 

1A The encoder-decoder pair is jointly trained based 
on training Dataset B (upper bound). 0.9428 0.7730 0.7233 

1B NW-side trains a decoder on Dataset B. 
UE-side trains a nominal decoder and an encoder 
based on Dataset B. 

0.9383 
(0.48%) 

0.7721 
(0.12%) 

0.7228 
(0.08%) 

2 NW-side trains a decoder on Dataset A. 
UE-side trains a nominal decoder based on 
Dataset A, and then, UE-side trains encoder 
based on Dataset B. 

0.9407 
(0.22%) 

0.7680 
(0.54%) 

0.7155 
(1.09%) 

 
II-2.4.2.  Direction C 

Assuming that the trained reference model is standardized, we compared the impact 
on CSI reconstruction accuracy in case where the dataset distributions are different 
between the reference model training and the inference phases. We consider the following 
four scenarios as shown in Fig. II-2.4.2-1: a) without retraining, i.e., reference model, b) 
retraining the AI/ML model only on the UE-side, c) retraining AI/ML model only on the 
NW-side, and d) retraining AI/ML model independently on both the UE-side and NW-
sides. 

The evaluation conditions are shown in Table II-2.4.1-1. The dataset for reference 
model training (Dataset S) is based on a dense urban macro scenario with a UE 
distribution of {80% indoor, 20% outdoor}. In addition, 3 types of UE antenna 
configurations are assumed. For retraining and inference, Dataset A is used for NW-side 
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retraining and Dataset B is used for UE-side retraining, whose dataset construction is 
same as in Section 4.1. 

 
(a) Training of reference model            (b) Retraining on the UE-side only 

 
(c) Retraining on the NW-side only       (d) Retraining on the UE-side and NW-sides. 

Fig. II-2.4.2-1: Retraining of the reference model 

Table II-2.4.2-1: Performance of finetuning encoder and decoder under Direction C 
 SGCS by inference on Dataset B 

(Performance loss from upper bound) 
LOS: 100% LOS: 40% LOS: 20% 

The model is trained based on training Dataset 
B (upper bound). 0.9437 0.7701 0.7234 

The specified model is trained based on training 
Dataset S. 

0.9238 
(2.12%) 

0.7484 
(2.83%) 

0.6896 
(4.67%) 

Encoder model is trained against the specified 
decoder model using Dataset B. 

0.9290 
(1.56%) 

0.7536 
(2.16%) 

0.6959 
(3.81%) 

Decoder model is trained against the specified 
encoder model using Dataset A. 

0.9335 
(1.08%) 

0.7563 
(1.80%) 

0.6992 
(3.34%) 

Encoder / decoder model is separately trained 
against specified decoder / encoder model using 
Dataset B (at UE-side) and Dataset A (at NW-
side). 
(No inter-vendor collaboration) 

0.9320 
(1.24%) 

0.7541 
(2.09%) 

0.6968 
(3.69%) 

 
Table II-2.4.2-1 shows the SGCS value under Direction C. For comparison, the 

inference results using AI/ML model trained on the inference dataset is also shown. 
AI/ML model without retraining shows performance degradation due to the mismatch in 
dataset distribution. Performance improvements can be observed when the UE-side or 

Ref. Enc.
(trainable)

Ref. Dec
(Frozen)

Tuned Enc. Ref. Dec.

Dataset B
(UE-side)

Encoder
(trainable)

Decoder
(trainable)

Training

Ref. Enc Ref. Dec

Dataset S
(Synthetic)

Training

Ref. Enc.
(Frozen)

Ref. Dec
(trainable)

Ref. Enc. Tuned Dec. Tuned Enc. Tuned Dec.

Encoder and decoder generated in (b) and (c) are 
used on UE-side and network-side, respectively.

Training Dataset A
(NW-side)
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NW-side retrains using datasets that match the inference environment. The performance 
improvement by retraining on the NW-side only is larger than that by retraining on the 
UE-side only due to the decoder having more layers and parameters. The improvement is 
limited when the UE-side and NW-side retrain independently without coordination. This 
suggests that when retraining models on both the UE-side and NW-side, it is necessary 
to share the retraining results from the NW-side with the UE-side, resulting in the 
necessity of Direction A with the combination with Direction C. 
 
II-2.5.  Conclusion 

We introduced three approaches for training collaboration of AI/ML-based CSI 
compression using a two-sided model, which will be used as a starting point for studying 
two-sided AI/ML solutions in 6G. Computer simulations show that performance 
improvements can be achieved by retraining models on both the UE-side and NW-side 
while suggesting that sharing retraining results between the NW-side and UE-side is 
necessary for improving the performance, highlighting the potential need for a 
combination of Direction A and Direction C. Performance investigation of Direction A-2 
is left as our future study. 
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Abstract— For 6G, the use of AI/ML is one of the key technologies and its application 

to the air interface is being widely considered. This article introduces the proof-of-
concept (PoC) for AI-native air interface (AI-AI) which utilizes AI/ML for some functions 
of the air interface for 6G. The AI-AI PoC is tested in an indoor environment, and the 
throughput improvement by AI-AI is confirmed. In addition, tests using a channel 
emulator confirmed that AI-AI can further improve throughput in a high-speed mobile 
environment. 
 
II-3.1.  Introduction 

The application of AI/ML (Artificial Intelligence / Machine Learning) technology to 
wireless communications have been widely studied, and a vision called AI-native air 
interface (hereinafter referred to as AI-AI) has been proposed in which AI/ML will be 
used to optimize the air interface end-to-end [1, 2, 3]. In the 3GPP Release 19 currently 
under discussion, beam management, positioning, CSI feedback, etc. are being studied 
as a first step in applying AI/ML to the air interface [4].  AI/ML technology will continue 
to be one of the key topics in 6G, and AI/ML will be used in a lot of air interface functions.  

Nokia, SKT, DOCOMO and NTT are collaborating on the development of AI-AI proof-
of-concept (PoC) [5]. We tested the AI-AI PoC, which utilizes AI for some functions of the 
air interface, in a real environment. This article shows the results of the throughput 
performance of AI-AI. 
 
II-3.2.  AI-AI PoC System 

In the proposed AI-AI PoC system (hereinafter referred to as proposed scheme), the 
transmit constellations and the receiver that handles channel estimation, equalization, 
and demodulation are jointly learned as shown in Fig. II-3.2-1 [6]. In the training, the 
simulation data of several propagation environments shown in Table II-3.2-1 are used. In 
addition, the signal-to-noise ratio (SNR) is randomized between 0 and 20 dB and these 
random parameters are generated for each frame. The constellations learned by the  
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Fig. II-3.2-1. System model of the proposed AI-AI PoC system. 
 

 

Fig. II-3.2-2. Schematic diagram of the OFDM slots for throughput calculation. 
 
proposed scheme are typically non-uniform patterns as shown in the example in Fig. II-
3.2-1. In the receiver, CNN (Convolutional Neural Network) is used to estimate the LLR 
(Log-Likelihood Ratio) based on the received symbols [7]. In the system, the conventional 
5G NR-based scheme (hereinafter referred to as conventional scheme) transmits DM-RSs 
(DeModulation-Reference Signals) in 2 or 3 OFDM symbols in one slot, while the proposed 
scheme does not because there is no explicit channel estimation process. Also, neither 
scheme uses the first symbol for data transmission.  

The proposed scheme can transmit data using all available resources, without having 
to transmit DM-RS, which is expected to improve throughput. In addition, the proposed 
scheme learns at velocities up to 200 km/h. Therefore, the proposed scheme does not suffer 
from the degradation of the accuracy of the channel estimate as occurs in conventional 
scheme, and further performance improvement can be expected in high-speed mobile 
environments. In the tests of AI-AI PoC, the throughput is measured as calculated by the 
following equation,  

 

CP data …30 kHz

Tsym
Tslot

…

CP data CP data…CP data CP DM-RS
… …
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Table II-3.2-1. Simulation parameters for training 
Channel model 3GPP TDL-A, TDL-B, TDL-C 

Velocity 0~200 km/h 
Delay spread 10~500 ns 

SNR 0-20 dB 
 

Table II-3.2-2. Specifications of the test 
Center frequency 4.8 GHz 

Subcarrier spacing 30 kHz 
Number of subcarriers 300 

MCS index 5~10 (16QAM) 
 

𝐶𝐶 =  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  �𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚 ∙ 𝑁𝑁𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑⁄ � �1－𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� , (1)
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝐶𝐶𝑆𝑆 ∙ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑄𝑄𝑚𝑚 ∙ 𝑅𝑅, (2)

 

where 𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚, 𝑁𝑁𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚 , 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑  and 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 are the OFDM symbol duration, the number of data 
symbol within a slot, the slot duration and block error rate, respectively, as shown in the 
schematic diagram in Fig. II-3.2-2. 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum throughput determined by the 
MCS (Modulation Coding Scheme), and 𝑆𝑆𝐶𝐶𝑆𝑆, 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑄𝑄𝑚𝑚  and 𝑅𝑅  are the sub-carrier 
spacing, the number of sub-carriers, the modulation order and the coding rate, 
respectively. The specifications of the tests are shown in Table II-3.2-2. In the tests, the 
MCS index for 16QAM specified by 256QAM index table of 3GPP is employed [8]. 

 
II-3.3.  Indoor Test of AI-AI PoC 

This section shows the indoor tests of AI-AI PoC in real environments. Fig. II-3.3-1 
shows a schematic diagram and pictures of the AI-AI PoC system. In the test, the 
baseband processing is implemented in the GPU server and a software-defined radio is 
used to transmit and receive signals. For the transmitting and receiving antenna 
omnidirectional antennas are used. Fig. II-3.3-2 and II-3.3-3 show the schematic diagram 
and picture of the test environment, respectively. In this test, throughputs are measured 
at the six fixed points indicated by the red dots in Fig. II-3.3-2 in a static test, while in a 
dynamic test throughputs are measured while moving at walking speed along the 
measurement routes 1 to 5. The number of DM-RSs is 2 OFDM symbols within a slot and 
MCS index is 5 in the tests. In the static test, no block errors occurred at any 
measurement points for both the conventional scheme and the proposed scheme, and 
consequently the throughput improvement obtained from the ratio of the number of data 
symbols and block error rate between the proposed and conventional scheme is 18% by 
excluding DM-RSs. In the dynamic test, the block error rate of the proposed scheme is 
slightly higher than that of the conventional scheme, but the throughput improvement of 
the proposed scheme is 6 ~ 16 % as shown in Fig. II-3.3-4. 
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Fig. II-3.3-1. Schematic diagram and pictures of AI-AI PoC system. 

 

 
Fig. II-3.3-2. Schematic diagram of the indoor test environment. 

 

 
Fig. II-3.3-3. Picture of the indoor test environment. 
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Fig. II-3.3-4. Throughput improvement by the proposed scheme. 

 
II-3.4.  Test of AI-AI PoC in Mobile Environments Using a Channel Emulator 

This section shows the test of AI-AI PoC in mobile environments using channel 
emulator which is connected between the transmitter and receiver as shown in the Fig. 
II-3.4-1. In this test, the performance at speeds of 3 km/h and 120 km/h are measured, 
and the channel model of WLAN-B is used as it is different from the channel models used 
for learning [9]. Fig. II-3.4-2 shows the measurement results of throughput versus 
required SNR if the MCS index for 16QAM is varied. In this figure, the measurement 
values of throughput and required SNR are plotted when the block error rate (BLER) 
equals 10−1  at each index. For comparison, the characteristics of the conventional 
scheme in which 3 symbols of DM-RS are inserted are also shown in Fig. II-3.4-2. The 
figure shows that the proposed scheme has improved throughput compared with the 
conventional scheme. In particular, when comparing the results of 3 km/h and that of 
120 km/h, the performance of conventional scheme deteriorates because it becomes 
difficult for channel estimation to follow the time variation of the channel, but the 
performance of the proposed scheme does not show significant degradation. For example, 
when the SNR is approximately 15 dB at 120 km/h, the proposed scheme operates with 
MCS index = 8 whereas the conventional scheme operates with MCS index = 7. In this 
case, the proposed scheme can improve the throughput by about 47% compared with the 
conventional scheme. 
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Fig. II-3.4-1. Schematic diagram and pictures of AI-AI PoC system with channel 

emulator. 
 

 

Fig. II-3.4-2. Throughput versus required SNR 

 
II-3.5.  Conclusion 

In this article, we presented test results for the AI-AI PoC, confirming its effectiveness. 
In the indoor tests, AI-AI improved the throughput by 6 ~ 18 % compared to the 
conventional 5G-NR-based scheme. In addition, in the channel emulator tests, it was 
confirmed that AI-AI can improve the throughput by about 47% in high-speed mobile 
environments. In the future, we will test the AI-AI PoC in a variety of different 
environments, including outdoor experiments. 
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Abstract— We present a hardware-efficient neural network-based digital 

predistortion (DPD) approach for millimeter-wave and terahertz power amplifiers using 
DeepShift. By replacing multiplications with bitwise-shift and sign operations, our 
method reduces power consumption by up to 196 times in FPGA and 24 times in 45nm 
CMOS while maintaining comparable Error Vector Magnitude (EVM) performance. 
Experimental results with 4.8GHz bandwidth signals demonstrate EVM improvements 
from 23.96% to 10.23% for millimeter-wave and 55.25% to 20.93% for terahertz power 
amplifiers. Our DeepShift-based DNN implementation achieves these results with zero 
multipliers, offering a practical solution for Beyond-5G systems requiring wide-
bandwidth nonlinearity compensation. 
 
II-4.1.  Introduction 

The evolution of mobile communications toward Beyond-5G and 6G systems demands 
wider bandwidth operations in millimeter-wave and terahertz bands. At these higher 
frequencies, power amplifier (PA) nonlinearity becomes a critical challenge, significantly 
degrading system performance. This degradation is particularly severe in higher 
frequency bands due to physical device constraints, leading to more pronounced 
nonlinearity effects. While PA characteristics can be improved through hardware 
optimization, such improvements often result in reduced power efficiency. 

Digital predistortion (DPD) has emerged as a key technique for nonlinearity 
compensation, applying inverse characteristics to the input signal to counteract PA 
distortion. Traditionally, DPD has employed polynomial models such as memory 
polynomials (MP) [1], where PA behavior is expressed as a series of Volterra kernels with 
different nonlinear orders. These models consider past inputs (memory effects) that 
influence current output. However, as communication systems expand into wider 
bandwidths, the complexity of nonlinear distortion increases, making polynomial-based 
compensation insufficient.  

Recently, neural networks (NNs) have been proposed for application in DPD to model 
complex distortions that occur in wideband systems. Multilayer perceptrons (MLPs) are 
often used due to their ease of implementation and learning algorithms; based on MLPs, 
real-valued time-delay neural networks (RVTDNN) [2] have been proposed, which 
decompose complex signals into real-valued in-phase and orthogonal components and 
use real-valued learning algorithms RVTDNN takes into account the memory effect of 
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PA by simultaneously using current and past instantaneous inputs in the input layer. 
In addition, deep neural networks (DNNs), RVTDNNs with multiple hidden layers, have 
also been studied to capture more complex nonlinear behavior. While these networks 
achieve excellent modeling performance, their implementation complexity, particularly 
the numerous floating-point multiplications, poses significant hardware challenges. 

In this paper, the performance of NN-based nonlinear distortion compensation in the 
millimeter-wave PA and terahertz bands is evaluated experimentally, and efforts to 
reduce implementation cost by replacing NN multiplication with bit shift and sign 
operations for the implementation of NN nonlinear distortion compensators are also 
described. 
 
II-4.2.  Neural Network DPD Architecture 

This paper employs direct learning [3] as the learning method for neural network-
based nonlinear distortion compensation. Direct learning first models actual PA 
operation and then uses this neural network model to train another neural network model 
for DPD. We use two architectures: a Real-valued time-delay neural network (RVTDNN) 
with one hidden layer and a Deep neural network (DNN) with three hidden layers, both 
using simple fully connected layers. Figure II-4.2-1 shows the RVTDNN architecture. The 
NN inputs include delayed input signals to the PA, with I/Q signals used as real values. 
The output predicts and outputs the I/Q signal values of the PA output. Delayed signals 
are included in the input to model memory effects, where PA output is influenced by past 
input signals. In our evaluation, hidden layers have twice the number of neurons as the 
input layer, and tanh is used as the activation function. 

 

Fig. II-4.2-1. RVTDNN architecture showing the network structure with delayed input 
signals and I/Q signal processing. 

 
II-4.3.  DeepShift 

DeepShift is a technique that replaces multiplication operations in neural networks with 
bit shifts and sign inversions [4]. Figure II-4.3-1 shows an example of operation 
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replacement in DeepShift. The core concept is replacing multiplications with bit shifts 
by expressing weights as powers of 2. This approach significantly reduces computational 
complexity and power consumption since bit operations are much simpler to implement 
in hardware compared to floating-point multiplication. Specifically, bitwise shifts in 
FIX32 implementation have been shown to reduce power consumption by 24 times and 
196 times compared to multiplication in 45nm CMOS technology and FPGA (ZC706), 
respectively [5]. The authors have demonstrated that DeepShift can be applied to power 
amplifier modeling while maintaining performance [6]. 
 

 
Fig. II-4.3-1. Example of multiplication replacement in DeepShift implementation, 
demonstrating conversion from standard multiplication to bitwise-shift operations. 

 
II-4.4.  Measurement Setup 

Experiments were conducted using millimeter-wave and terahertz band PAs. Tables 
II-4.4-1 and II-4.4-2 show the parameters of the OFDM signals and NN parameters used 
in the experiments. The memory depth (number of delay taps) used for the NN input 
signals was 13 for millimeter-wave and 99 for terahertz, with input neuron numbers of 
28 and 100, respectively. Performance metrics include the Error Vector Magnitude 
(EVM) between the actual PA output signal and predicted output. 

 
Table II-4.4-1. OFDM Signal parameters for millimeter-wave and terahertz band 
OFDM testing, showing key configuration for evaluating DPD performance across 

different frequency bands. 
Center Frequency 37.5 GHz (Millimeter-wave), 261.0 GHz 

(Terahertz) 
Number of Subcarriers 19008 
FFT size 32768 
Bandwidth 4.8 GHz 
Modulation Scheme QPSK 
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Table II-4.4-2. Neural network training configuration parameters, detailing 
optimization settings and DeepShift specifications for both frequency bands. 

Stochastic Gradient Descent Method Adam optimization 
Loss Function Mean Square Error 
Mini-batch Size 1024 
Number of Epochs 100 (Millimeter-wave), 200 (Terahertz) 
Training Symbols 5 OFDM symbols 
Learning Rate Initial value: 0.005 (Millimeter-wave), 

0.001 (Terahertz) 
DeepShift Weight Sign part: 1 bit, Bitwise shift part: 4 bit 

 
II-4.5.  Experimental Results 

Tables II-4.5-1 and II-4.5-2 show the results of applying DeepShift-based DPD to 
millimeter-wave and terahertz power amplifiers. The results demonstrate that, 
particularly when using DNN, comparable EVM accuracy to floating-point 
implementation can be achieved even when applying DeepShift to replace NN 
multiplications with bit shifts and sign operations. Between DNN and RVTDNN, DNN 
shows less EVM degradation when applying DeepShift, likely due to its larger scale 
helping mitigate errors from multiplication replacement. 

Comparing millimeter-wave and terahertz compensation performance, the 
performance difference between RVTDNN and DNN is larger for terahertz, indicating 
that terahertz requires more sophisticated models due to more complex distortion. The 
AM-AM characteristics show that compensation suppresses characteristic spreading for 
both millimeter-wave and terahertz, indicating successful mitigation of memory effects. 
The power spectra show improved flatness across frequency bands after distortion 
compensation. 

 
Table II-4.5-1. Performance comparison of nonlinear distortion compensation for 

millimeter-wave power amplifier, showing operation counts and EVM improvement for 
different model architectures. 

Model type EVM [%] Multiplication Bitwise 
shift& sign Add Activation 

Without DPD 23.96     

RVTDNN 12.37 1680 0 1680 56 

RVTDNN (DeepShift) 14.65 0 1680 1680 56 

DNN 10.13 7952 0 7952 168 

DNN (DeepShift) 10.23 0 7952 7952 168 
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Table II-4.5-2. Performance comparison of nonlinear distortion compensation for 
terahertz power amplifier, demonstrating computational efficiency and EVM 

improvement across different architectures. 

Model type EVM [%] Multiplication Bitwise 
shift& sign Add Activation 

Without DPD 55.25     

RVTDNN 29.92 20400 0 20400 200 

RVTDNN (DeepShift) 29.96 0 20400 20400 200 

DNN 20.74 100400 0 100400 600 

DNN (DeepShift) 20.93 0 100400 100400 600 

 

  

(a) Without DPD (b) DNN (DeepShift) 

Fig. II-4.5-1. Constellation diagrams for millimeter-wave PA (a) without DPD and (b) 
with DNN using DeepShift, showing improvement in signal quality. 

 

  

(a) Without DPD (b) DNN (DeepShift) 

Fig. II-4.5-2. Constellation diagrams for THz PA (a) without DPD and (b) with DNN 
using DeepShift, showing improvement in signal quality. 
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(a) Millimeter-wave (b) Terahertz 

Fig. II-4.5-3. AM-AM characteristics comparison of input signal, PA output, and 
corrected output with DeepShift applied. 

 

  

(a) Millimeter-wave (b) Terahertz 

Fig. II-4.5-4. Power spectral density comparison of input signal, PA output, and corrected 
output with DeepShift applied. 

 
II-4.6.  Conclusion 

This paper demonstrated nonlinear distortion compensation for millimeter-wave and 
terahertz band power amplifiers with 4.8GHz bandwidth signals. To reduce hardware 
implementation costs, we applied DeepShift, replacing neural network multiplications 
with low-cost bitwise shifts and sign operations. Experimental results confirmed that 
DeepShift implementation achieved EVM accuracy comparable to floating-point 
compensation. Future work includes evaluating DeepShift application to more complex 
neural network models such as RNNs. 
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Abstract— In the sixth-generation mobile communication system (6G) era, high-

frequency bands (e.g., sub-terahertz (sub-THz) bands) show promise for achieving 
extremely high-speed and high-capacity communications. However, it is difficult to 
ensure radio frequency (RF) circuit quality in high-frequency bands compared to lower 
frequency bands below mmWave, and utilizing higher performance and higher quality 
circuits lead to higher costs. Considering the increasing popularity of the high-frequency 
bands, it is vital to achieve low cost while simultaneously ensuring communication 
quality. It is also necessary to optimize the communication quality, cost, and power 
consumption of the whole radio access network (RAN) by considering the diversified 
topology. This chapter presents a conceptual overview of our proposed artificial 
intelligence (AI) device calibration and the AI calibration network to optimize 
communication quality and calibration cost based on AI. Further, as a basic examination 
of AI device calibration, we demonstrate a compensation technology for RF impairments 
based on a deep neural network (DNN). 
 
II-5.1.  Introduction 

One of the requirements for sixth-generation mobile communication systems (6G) is 
an extremely high data rate and capacity. Radio access technologies (RAT) to provide 
data rates over 100 Gbps are being discussed as a potential way of meeting this 
requirement. To achieve 100 Gbps, exploiting higher frequency bands between 100 GHz 
and 300 GHz with a wider bandwidth than 5G (e.g., sub-terahertz (sub-THz) bands) is a 
promising approach. However, to utilize the sub-THz bands in 6G, similar to the case 
when introducing the millimeter-wave band in 5G, there are many technical issues that 
need to be resolved by the 2030s. These technical issues are diverse and exist mainly in 
four areas: radio propagation, radio frequency (RF) devices, modulation and 
demodulation schemes, and air interfaces, which are summarized in detail for each area 
in [1].  

Focusing on the technical issues in RF devices, the characteristics of the RF devices 
mainly depend on the frequency band and the signal bandwidth, and it is difficult to 
ensure the same circuit characteristics in the high-frequency bands as those in the low 
frequency [2]. Some RF impairments, such as frequency selectivity, IQ imbalance, direct 
current (DC) offset, carrier leakage, phase noise, and nonlinear distortion, have become 
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increasingly pressing as implementation challenges because they can cause degradation 
of the communications quality. While performance enhancement and high integration of 
the RF devices are required, for the popularization of high-frequency bands, the RF 
devices must be manufactured with a level of accuracy and a cost that enables usage in 
6G commercial services. Cost reduction can be achieved by allowing the use of low-
quality devices, but a calibration scheme by digital signal processing (DSP) is necessary 
for ensuring the communication quality. Although a partial compensation technique for 
the RF impairments by DSP has been proposed, this technique requires designing an 
optimal digital calibration for high-frequency bands, where the influence of each RF 
impairment is both large and mixed. In recent years, technology that compensates for 
multiple RF impairments by utilizing artificial intelligence (AI) such as deep neural 
networks (DNN) has attracted attention [3]. 

The performance of the RF device and the resources (e.g., processor capability and 
power consumption) available for DSP are different for each wireless device. Therefore, 
it is desirable that the cost of digital calibration is dynamically optimized in accordance 
with the constraints of the available hardware and the required quality from the 
applications. In addition, it is necessary to optimize the communication quality, cost, and 
power consumption of the whole radio access network (RAN) by considering the 
diversified topology. In this chapter, we present our concept of AI device calibration and 
the AI calibration network [4], which utilizes AI to optimize the communication quality 
and the calibration cost. Also, as a basic technology of AI device calibration, a 
demodulation technology [5] utilizing DNN is introduced. 
 
II-5.2.  Concept of AI Calibration 
II-5.2.1.  AI Device Calibration 

Fig. II-5.2.1-1 shows the concept of AI device calibration. The required specifications 
for the equipment differ between base station (BS) and user equipment (UE), which 
means the characteristics of the RF circuit, the capability of the processor, and the 
allowable power consumption for DSP are also different from each device. On the other 
hand, regarding the communication quality, the total communication quality that can be 
observed end-to-end only needs to meet the requirements. In other words, points such as 
calibrating within the transmitting station to send a high-quality signal, calibrating only 
at the receiving station, setting the proportion of each calibration processing load, etc. 
can be freely designed. In AI device calibration, the existence of digital calibration in 
each station, the compensation scheme to be used, and the level of compensation 
accuracy are dynamically controlled in accordance with the constraint of available 
hardware and the demands of the communication quality. As a case study of a 
compensation scheme, we introduce a DNN demodulator in Section 3.1. 
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Fig. II-5.2.1-1. Concept of AI device calibration. 

 
II-5.2.2.  AI Calibration Network 

In the 6G era, many devices will be connected to the RAN through various frequency 
bands, so the topology of the RAN is expected to diversify. Therefore, new radio network 
topology (NRNT) has been investigated to improve the performance of RAN for 5G 
Evolution and 6G [6]. In NRNT, the topology changes dynamically in accordance with 
the environment, situation, and requirements based on various key performance 
indicators (KPIs). With sub-THz bands, optimization in the whole of RAN including the 
relay station (RS) is required, since the impact on KPIs such as equipment cost and 
power consumption seems to be large. 

Fig. II-5.2.2-1 shows the concept of the AI calibration network. The AI device 
calibration described in Section II-5.2.1 is extended to the entire RAN. The AI calibration 
network collects the resource information such as the performance of the RF devices of 
each equipment, processor capability, and power consumption available for DSP. The 
calibration cost of each device is controlled in accordance with the constraint of available 
hardware and the requirement of communication quality. In addition, appropriate route 
selection is performed for the optimization of the whole network. 

 
Fig. II-5.2.2-1. Concept of AI calibration network. 

 

(Transmitter)

RF circuit

(Receiver)

AI device calibration

Processor
Calibration

circuit

Processor

RF circuit Calibration
circuit

Modulation
circuit

Demodulation
circuit

OptimizationHardware and 
resource info.

BS RS

UE

RS

AI calibration network

Hardware, resource, 
and environment info.

BS RS UE

Optimization



 
 
 

 66 

II-5.3.  Compensation Technique based on AI 
II-5.3.1.  Deep Neural Network Demodulator 

In this section, we introduce a technique to compensate for multiple RF impairments 
based on DNN. Fig. II-5.3.1-1 shows the system model of our DNN demodulator. 
Assuming single carrier-(SC) frequency domain equalization (FDE) transmission with 
nonlinear distortion of the amplifier and IQ imbalance of the IQ modulator/demodulator, 
bit detection by DNN is performed for the received symbols after FDE. The FDE output 
is divided into an IQ real valued sequence after IFFT processing and passed to the input 
layer of the DNN. The DNN outputs a vector consisting of values from 0 to 1 via the 
sigmoid function. The DNN is trained to minimize the root mean square error (RMSE) 
of the training data and the output data. Round processing is performed after the DNN, 
and the bit string corresponding to the index of the input data is output. 

 

 
Fig. II-5.3.1-1. System model of DNN demodulator. 

 
II-5.3.2.  Numerical Results 

In this section, we evaluate the effectiveness of the DNN demodulator. Table II-5.3.2-
1 lists the parameters utilized during learning and validation. The nonlinearity of the 
power amplifier utilizes a Rapp model with the input back off (IBO) of 2 dB. The IQ 
imbalance of the quadrature modulator and demodulator is 1 dB in amplitude and 5° in 
phase. The average signal to noise power ratio (SNR) is 30 dB while learning the DNN. 
The fading channel assumes a static environment and utilizes common values in the 
learning and test data. We use 16-QAM and 64-QAM for the modulation scheme. 
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Fig. II-5.3.2-1 shows the bit error rate (BER) performance of the DNN demodulator, 
w/o compensation, and w/o RF impairments of nonlinear distortion and IQ imbalance. In 
w/o compensation, hard decision demodulation is performed after IFFT. Compared to w/o 
compensation, the DNN demodulator improves the BER performance and approaches 
the characteristics of the case without RF impairments. These results demonstrate that 
the communication quality can be improved by using the DNN demodulator for RF 
impairments. 

 
Table II-5.3.2-1. Simulation parameters for training and validation. 

Parameter Value 
Modulation scheme 16-QAM, 64-QAM 

PA Nonlinearity Rapp model[7], p=2,  
IBO=2 dB 

Tx and Rx IQ imbalance Amplitude: 1 dB 
Phase: 5° 

Channel model Static, exponential 
CIR length 4 

Average SNR Training: 30 dB 
Validation: 10 dB – 30 dB 

FFT size 64 
 

 

Fig. II-5.3.2-1. BER performance with PA nonlinearity, IQ imbalance, and fading 
channel. 
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II-5.4.  Conclusion 

To popularize the use of high-frequency bands, it is desirable to optimize the trade-off 
between communication quality and cost reduction in accordance with the application 
requirements. We introduced a conceptual overview of AI device calibration as an 
optimization technology that dynamically controls the calibration cost in accordance 
with the constraint of available hardware and the demand of the communication quality. 
We also proposed an AI calibration network to optimize the device calibration cost across 
the RAN, which is an important KPI in the sub-THz bands. Our findings demonstrated 
the effectiveness of the RF impairment compensation technology based on DNN as a 
basic technology for AI device calibration. 
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Abstract— The ITU-R has defined "AI and Communication" as one of the six usage scenarios 
for 6G systems. However, its KPIs and minimum requirements are yet to be defined. This 
paper describes the "AI and Communication" scenario and the typical AI services in 6G. It 
also introduces general principles for performance definition, and detailed performance 
indicators with the requirements. Then, this provides an evaluation methodology for the 
proposed performance indicators, along with an example of evaluation procedures. 
 
II-6.1.  Introduction 

With rapid development of AI technologies, it becomes an essential feature in 
industries and society. Mobile systems will also revolutionarily be evolved as a unified 
infrastructure that integrates communication and AI that delivers ubiquitous AI 
services in the 6G era.  

This paper aims to provide guidelines for designing 6G systems and ensure users 
receive guaranteed AI services. Specifically, it describes the "AI and Communication" 
scenario defined in the IMT-2030. Next, this summarizes the current status of the 
performance indicators, then, introduces the design principles, the proposed qualitative 
and quantitative performance requirement definitions. Finally, it provides the 
corresponding evaluation methodology with examples. 
 
II-6.2.  AI and Communication 

6G aims to make intelligence inclusive 
by providing AIaaS. By utilizing the data 
and resources of distributed intelligent 
terminals, 6G will provide AI model 
training services, made possible through 
local training at distributed terminals and 
model interaction between them over the 
network. 6G can also provide high-
accuracy inference services for resource-
constrained terminals by joint scheduling 

Fig. II-6.2.1-1, Usage scenario of IMT-2030 
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of communication and AI resources. This will drive AIaaS to become a typical application 
scenario of 6G.  
 
II-6.2.1.  AI and Communication in the IMT-2030 Framework 

To facilitate the development of IMT-2030 and beyond, the ITU-R WP-5D approved a 
new framework [1]. The six usage scenarios identified by the ITU-R are shown in Fig. II-
6.2.1-1. To support the new usage scenarios, IMT-2030 includes AI- and sensing-related 
capabilities, as listed in Table II-6.2.1-1. The "AI and Communication" usage scenario 
would require high area traffic capacity and user experienced data rates, as well as low 
latency and high reliability. In addition to the communication aspects, a set of new 
capabilities related to the integration of AI functionalities is expected, including data 
acquisition, preparation and processing from different sources, distributed AI model 
training, model sharing and distributed inference across IMT systems. 
 

Table II-6.2.1-1 Capabilities of IMT-2030 
Enhanced Capabilities IMT-2020 IMT-2030 

Peak data rate (Gbps) 20/10 for DL/UL e.g., 50, 100, 200 

User experienced data rate (Mbps) 100/50 for DL/UL e.g., 300, 500 

Spectrum efficiency (bps/Hz) (Peak) 30/15 for DL/UL e.g., x1.5, x3 

Area traffic capacity (Mbps/m2) 10 e.g., 30, 50 

Connection density (devices/km2) 106 106–108 

Mobility (km/h) 500 500–1000 

Latency (ms) 1 0.1–1 

Reliability 1 – 10–5 1 – 10–5 to 1 – 10–7 

New Capabilities of IMT-2030 Value 

Coverage TBD 

Sensing-related capabilities TBD 

AI-related capabilities TBD 

Sustainability TBD 

Positioning (cm) 1–10 

 
II-6.2.2.  Typical Services in the "AI and Communication" Scenario 

IMT-2030 will efficiently support AI applications in an end-to-end manner, connecting 
distributed intelligence to provide ubiquitous AI services. It required to build a 
distributed and efficient AI service platform by utilizing the connection, data, and model 
resources in the network.  
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II-6.2.2.1 An Exemplary AI Application 
Served by IMT-2030, collaborative robots as in 
Fig. II-6.2.2-1 are widely recognized as a future 
6G application scenario that requires AI 
services with low latency and high learning 
and inference accuracy. In this use case, 
multiple robots work together to accomplish 
complex tasks in an industrial environment. 
Through local vision or control models, the 
robots will be able to detect objects from the 
sensed images and plan the path trajectory 
with corresponding control decisions for the 
subtasks. These robots can cooperate with each other over the network to improve the 
performance of local models via collaborative training. 
 
II-6-2.2.2 Model Inference Service 

AI model inference is a fundamental function for AI applications. It takes inputs, runs 
the AI models, and produces the expected outputs. Through ubiquitous connectivity, the 
6G network with native intelligence could provide real-time model inference capabilities 
that meet different requirements. Fig. 
II-6.2.2-2 illustrates a typical AI model 
inference service. In this service, a large 
model may be split into two parts, which 
are deployed on the network and user 
sides and work together.  
 
I-6-2.2.3 Model Training Service 

AI model training is key for obtaining a model with high accuracy. In the large-scale 
distributed AI model training service, the 
network serves as a management platform to 
provide high-speed data channels and 
efficient scheduling mechanisms for 
exchanging data or model parameters 
between distributed terminals. Fig. II-6.2.2-
3 illustrates a typical distributed training 
service. In each round, the distributed 
terminals use local data to train models 
locally and upload the updated models to the 
network for aggregation.  Fig.II-6.2.2-3 Distributed AI model training service 

Fig. II-6.2.2-2 AI model inference service 

Fig. II-6.2.2-1 AI applications for collaborative 

robots 
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II-6.3.  Performance Requirements for the "AI and Communication" Scenario 

System design is driven primarily by performance requirements, which evolve or 
revolutionize each generation of mobile systems. AI services not only involve 
transmissions, but also include AI-related resources, meaning that AI model 
learning/inference accuracy and latency are the KPIs. From an AI perspective, the 6G 
network should support large-scale distributed learning and real-time inference. The 6G 
network should consider both AI and communication in an integrated manner from the 
beginning.  
 
II-6.3.1.  Current Status 

Conventional mobile communication systems have mainly provided communication 
services. AI&ML features have been studied from Rel-18 such as in TR 22.874 [2]. 
Various applications have also been defined, however, all the AI/ML operations are 
expected to be executed in cloud servers. 6G requires new AI-related capabilities that 
expected to be introduced beyond communication, e.g., supporting AI services. Studies 
[3, 4], the China IMT-2030 Promotion Group and Hexa-X, both identify AI services 
provided by 6G as key factors.  However, the performance indicators are not illustrated 
clearly, and no details are defined for the requirements and evaluation methodology 
toward 6G. The computer science community has defined some AI training and inference 
KPIs to evaluate the capabilities e.g., MLPerf benchmark [5]. However, these KPIs are 
used to measure the hardware or software capabilities in a centralized way, it cannot be 
used to measure the capabilities of distributed AI services. 
 
II-6.3.2.  Principles for Performance Definition for AI and Communication in 6G 

6G AIaaS will provide various AI capabilities that adapt to different application 
scenarios. Accordingly, 6G AIaaS needs to consider integrating communications 
capabilities and AI capabilities in order to build comprehensive performance indicators 
and evaluation methods.  
The main principles of performance definition for AI-related capabilities can be listed; 
 End-to-end AI capabilities. AI services should use end-to-end performance as 

indicators in order to guarantee user-experienced service quality. The AI service 
quality depends on both communication and AI capabilities.  

 Typical services. The IMT-2030 system is the key to realizing ubiquitous intelligence. 
By utilizing the AI capabilities within the network, this system should provide a 
platform for large-scale distributed model training and unified high-accuracy model 
inference. 
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 Core performance. The goal of AI and communication integration is to enable AI 
services efficiently, including model training and real-time high-accuracy model 
inference. To ensure that AIaaS is acceptable to billions of users, it is crucial to focus 
on the key factors that impact the user experience. 

 
II-6.3.3.  Proposed Performance Requirements for AI and Communication in 6G 

The KPIs for AI and communication are defined from the perspective of services 
(including AI model training and inference) provided by 6G networks. The performance 
of such services depends on the AI model capabilities provided by the system's AI 
resources and the communication capabilities. Expected qualitative and three 
quantitative requirements are described below. 
 AI service functionality requirements 

The functionality requirements for AI-related capabilities are that the candidate radio 
interface technologies or sets of radio interface technologies shall have mechanisms 
and/or signaling related to the functionalities, e.g., distributed data processing, 
distributed learning, AI computing, AI model execution, and AI model inference. 
 AI service accuracy (or AI service quality) 

AI service accuracy is defined as the accuracy of the AI inference/learning service. 
Specifically, it is the degree to which the outputs from the AI service are the same as the 
true values for the given inputs within the given service latency requirements. For a 
given AI task, the AI service accuracy depends on the task characteristics, AI model 
deployment method, and AI-related data transmissions.  
 AI service latency 

AI service latency is defined as the time taken from the start to the end of the AI 
inference/learning service. It is the sum of the communication time for AI-related data 
transmissions and the processing time of the AI model, where the processing time 
depends on the devices and implementations.  
 AI service density 

AI service density is defined as the number of AI services that meet given AI service 
accuracy and AI service latency requirements supported by the network simultaneously 
per unit area. It is a system capacity indicator of the IMT-2030 system. For different 
application requirements (i.e., accuracy or latency), the system can support different AI 
service densities. 
 
II-6.4.  Evaluation Methodology and Example 

Service performance is determined by both communication and AI resources and 
should therefore be evaluated with certain communication and AI assumptions. This 
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section will describe the evaluation methodology first and then present an example with 
detailed assumptions and results. 
 
II-6.4.1.  Evaluation Methodology 

The performance requirements can 
be derived from two essential KPIs, 
namely, AI service accuracy and 
latency. AI service accuracy is defined 
as the degree to which the outputs 
from the AI service are the same as 
the true values for the given inputs. 
AI service latency is defined as the 
sum of AI model processing time and 
data transmission time, which also depends on both the AI model and AI-related data or 
model transmissions. The performance evaluation can follow the service procedures. Fig. 
II-6.4.1-1 shows proposed AI service performance evaluation system. The performance 
evaluation includes the following key components: 
● Resource assumptions: The evaluation should be done in a test environment 
similar to the definition in communication performance evaluations [6]. Within the test 
environment, the radio configurations should be provided, including the bandwidth, 
number of antennas at the UE and BS, and so on.  
● AI service procedures: The entire procedures can start from AI model processing 
at the UE where the intermediate data (model output or model weights) is generated. 
Then, this data is transmitted from the UE to the BS under the assumed radio 
configurations. Next, the BS receives the intermediate data and uses the AI model to 
process it in order to get the service results, which are then used to calculate performance 
indicators. 
● AI service performance calculation: The AI service accuracy and latency are 
calculated based on the service results, AI model processing time, and transmission time. 
The AI service accuracy is defined according to the AI task. The AI service latency is the 
sum of the AI model processing time at the UE and BS and the transmission time of 
intermediate data. 

For AI service density evaluation, AI service density is defined as the number of AI 
services that meet given AI service accuracy and latency requirements. This can be 
evaluated through AI service accuracy and latency simulation. For example, we can first 
set the number of served UEs N to a minimum value, and generate service requests from 
the UEs. Then, we use the evaluation parameters of the test environment to perform 
system simulation and collect statistics on the AI service accuracy within the service 
latency. We can gradually increase N and repeat the simulation until the AI service 

Fig. II-6.4.1-1, AI service performance evaluation system 
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accuracy falls below requirements, with the value of N to be 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 . The AI service density 
is calculated as 𝐶𝐶 = 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚/Converge area. 
 
II-6.4.2.  Evaluation Example 

We use the distributed AI inference service as an example to illustrate the performance 
evaluation methodology presented earlier. The methodology can also be used for 
collaborative training and inference services after the procedures are modified according 
to the corresponding service 
procedures. Suppose, AI-enabled 
robots need to perceive the 
environment through in-factory 
cameras. The images these robots 
collect can be further used to 
achieve real-time high-accuracy AI model inference as in Fig. II-6.4.2-1. The AI inference 
service consists of three steps: 1) the UE uses the UE-side AI model to process the input 
data in order to obtain intermediate data; 2) the UE transmits this data to the BS; 3) the 
BS uses the BS-side AI model to process the received intermediate data and obtain the 
inference results. The following evaluation methodology can also be applied for this 
downlink case. 
● Evaluation configurations: The evaluation configurations are defined as follows, 

with examples given in brackets. 
– Test environment: [Dense Urban] 
– Radio configurations: [ same as immersive communication (e.g., user 

experienced data rate: 500 Mbps)] 
– AI task: [image recognition] 
– AI dataset: [ImageNet-1k validation dataset [7]] 
– AI model: [AlexNet [8], the left part is processed by the UE, and the right part is 

processed by the BS, as shown in Fig. II-6.4.2-2] 
– AI model processing time: [UE: 0.75 ms; BS: 0.45 ms] 
● Evaluation procedures 
– AI service accuracy: AI service accuracy can be evaluated by simulation. The UE 

processes each input of sample 𝑆𝑆𝑠𝑠 , 𝑖𝑖 = 1,⋯ ,𝑛𝑛 in the data set based on the UE-side 
AI model, and obtains the intermediate data 𝑍𝑍𝑠𝑠. 

 

Fig. II-6.4.2-1 Distributed AI inference service example 
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According to the test environment and transmission configurations, the UE sends the 
intermediate data and the BS receives it. Taking a classical transmission scheme as an 
example, the intermediate data is first quantized and represented as bits, which are then 
encoded and modulated to symbols for wireless transmission. The BS processes the 
received intermediate data �̃�𝑧𝑠𝑠 based on the AI model on the BS side, and obtains the 
inference result 𝑌𝑌�𝑠𝑠 corresponding to each 
sample. We can then compare or 
calculate the inference results with the 
target output or label 𝑌𝑌𝑠𝑠 of each sample in 
order to obtain the degree to which the 
output is the same as the true value 

𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑛𝑛
� 1{𝑌𝑌�𝑖𝑖==𝑌𝑌𝑖𝑖}

𝑛𝑛

𝑠𝑠=0
, that is, the AI service accuracy. 

For the accuracy of the reference case, we can process each sample 𝑆𝑆𝑠𝑠 in the dataset 
based on the whole AI model in order to obtain the inference result 𝑌𝑌′� 𝑠𝑠. We can then 
compare the inference result with the label 𝑌𝑌𝑠𝑠 of each sample to obtain the output of the 
reference case. The degree to which the output is the same as the true value of reference 

case is 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟 = 1
𝑛𝑛
� 1{𝑌𝑌′�𝑖𝑖==𝑌𝑌𝑖𝑖}

𝑛𝑛

𝑠𝑠=0
. The relative AI service accuracy is calculated as 

𝑎𝑎𝑎𝑎𝑎𝑎/𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟.  
– AI service latency: The AI service latency is the sum of the time used for 
intermediate data transmission, 𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚  and the UE- and BS-side AI model processing time, 
𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠_𝑈𝑈𝐵𝐵 , 𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠_𝐵𝐵𝐵𝐵. Therefore, the AI service latency is given by 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑡𝑡𝑠𝑠𝑠𝑠𝑚𝑚+ 𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠_𝑈𝑈𝑈𝑈 + 𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠_𝐵𝐵𝐵𝐵. 
In this example, we use the time calculated as the number of payload bits divided by the 
data rate as the data transmission time. The number of payload bits is determined by 
the number of elements in the intermediate data and the number of quantized bits per 
element.  
 

Table II-6.4.2-1 AI service performance evaluation results 
Number of bits per 

element 

 
2 

 
4 

 
6 

 
8 

 
10 

 
12 

 
16 

 
32 

AI service accuracy (%) 
 

0.14 
 

10.35 
 

52.94 
 

56.47 
 

56.53 
 

56.55 
 

56.55 
 

56.56 

Relative AI service 
accuracy (%) 

 
0.24 

 
18.30 

 
93.61 

 
99.84 

 
99.95 

 
99.99 

 
99.99 

 
100 

AI service latency (ms) 
 

1.4 
 

1.6 
 

1.8 
 

1.9 
 

2.1 
 

2.3 
 

2.7 
 

4.2 

 
 

Fig. II-6.4.2-2 AlexNet model deployment example 
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● Evaluation results 
The AI service accuracy and latency under different transmission setups (i.e., number 

of quantized bits per element) are provided in Table II-6.4.2-1. As can be seen from the 
table, there is a trade-off between AI service latency and AI service accuracy due to the 
intermediate data transmission. If a minimum AI service accuracy of 56% with 
maximum AI service latency of 2ms are required (i.e., out target), we need to optimize 
the transmission configurations of 8 bits per element in this example or improve the 
transmission technology to meet both requirements. 
 
II-6.5.  Conclusion 

This paper illustrated the motivations, typical AI services, and performance 
requirements of the "AI and Communication" usage scenario — a new scenario defined 
in IMT-2030 for 6G. To provide guidelines for the system design and better support AI 
services, this proposed new performance indicators that integrate AI and communication 
capabilities and resources in the network, from both the user experience and network 
capacity perspectives. It also provided the corresponding evaluation methodology with a 
detailed example. For further detail of the contexts, the original paper can be seen in [9]. 
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Abstract— Cell-free massive MIMO (CF-mMIMO) is a promising approach for future 
mobile networks, utilizing centralized MIMO processing for densely distributed access 
points (APs). In CF-mMIMO, to reduce the computational load for signal processing 
while meeting throughput demands, user equipment (UEs) are served by APs selected 
as an AP cluster. A significant challenge is AP clustering for each UE, particularly in 
dynamic environments with moving UEs. One approach for optimizing the AP cluster 
involves AI/ML. This paper provides an overview of AP clustering method using deep 
reinforcement learning (DRL) and numerical simulation results. 
 
II-7.1.  Introduction 

A larger-scale distributed MIMO architecture, i.e., cell-free massive MIMO (CF-
mMIMO), has gained attention as a technology capable of providing high radio quality 
throughout an entire area [1]-[3]. In CF-mMIMO, a central processing unit (CPU) 
performs multi-user MIMO processing on radio signals from distributed APs. By 
coordinating signal processing among distributed APs, interference at the cell edges can 
be significantly reduced, ensuring high radio quality throughout the service area. APs 
with weak channel strength do not significantly enhance the radio quality for UEs. In 
AP clustering, APs that enhance radio quality are selected to form AP clusters for each 
UE, and the UE is served only by these selected APs [4]-[6]. This reduces the signal 
processing load since the number of channels involved in the MIMO calculation is limited. 

To reduce the signal processing load while ensuring the required radio quality for each 
UE, selecting AP clusters appropriately, on the basis of the movement of the UE, is 
crucial. Recently, the use of DRL for AP clustering has been explored in [7]-[15]. However, 
scalability continues to be a challenge. In large-scale environments with numerous APs 
and UEs, the computational load of DRL becomes significant. In this paper, we provide 
the overview of scalable AP clustering method with DRL and present the AP clustering 
performance in terms of throughput requirement satisfaction and computational load, 
including signal processing, as well as training and inference in DRL. 
 
II-7.2.  AP Clustering Problem for CF-mMIMO 

We have been researching user-centric radio access network (RAN) architecture to 
ensure consistent radio quality throughout the network area using CF-mMIMO [16]. The 
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user-centric RAN concept involves creating a logical network for each user on a physical 
infrastructure through network virtualization, as illustrated in Fig. II-7.2-1. Virtualized 
CPUs (vCPUs) are deployed for each user on the servers, with APs linked to these servers 
via mobile fronthaul. The vCPU executes multi-user MIMO by using radio signals to and 
from the APs within each user's AP cluster. The radio quality, measured as the signal-to-
interference-plus-noise ratio (SINR), is influenced by the channels of the selected APs in 
the AP cluster and other spatially multiplexed UEs.  

When DRL is applied to AP clustering in large-scale environments, the computational 
load of DRL increases because of two main factors. The first factor is the increase in model 
size. When DRL is used to select the optimal combination of APs and UEs, the size of the 
action space, that is, the number of candidate action combinations, expands exponentially 
with increasing number of APs and UEs. Moreover, as information about the entire area 
is required as an input for the model as states. These result in a larger neural network 
(NN) size in large-scale environments. The second factor is the increase in inference 
frequency. As the wireless environment changes with UE movement, it is necessary to 
dynamically select AP clusters to maintain the radio quality of UEs. Selecting AP clusters 
for all UEs at short intervals increases the overall inference frequency, thereby escalating 
the computational load of inference across the system. 

Our goal is to ensure the required radio quality for each UE with minimal 
computational load even in large-scale environments. To facilitate scalability, an AP 
clustering approach is necessary to suppress the overall computational load, including 
training and inference in DRL, as well as signal processing. 

 

Fig. II-7.2-1: User-centric RAN architecture with CF-mMIMO 
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II-7.3.  Scalable AP Clustering with Distributed DRL 
II-7.3.1.  AP Clustering Architecture 

We propose an AP clustering method with distributed DRL, including the following 
two components. The first component involves distributing per-user models. The learning 
model is designed to determine the increment or decrement of the AP cluster size for a 
single UE. Since APs with higher channel strength enhance radio quality, the 
combination of APs is then selected in descending order of the reference signal received 
power (RSRP) up to the determined AP cluster size. The model dynamically adjusts the 
AP cluster size for each UE. The proposed per-user model maintains a constant size, 
independent of the number of UEs or APs, preventing any increase in model size even in 
large environments. To achieve real-time AP clustering with high learning efficiency, the 
per-user model is distributed and processed in parallel. We use Ape-X [17], a distributed 
learning method for DRL. Fig. II-7.3.1-1 illustrates the proposed AP clustering 
architecture. In Ape-X, agents are divided into actors and learners. Multiple actors 
observe the state of the environment and determine actions in parallel via a common 
learning model provided by the learner. The learner performs training and updates the 
model from experiences generated in parallel by multiple actors.  

The second component involves assigning UEs to the actors. If an actor is launched for 
each UE and performs inferences with a short cycle, the overall inference frequency 
increases, especially in large-scale environments with many UEs. For fast-moving UEs, 
a short AP cluster update interval is necessary to maintain radio quality. However, for 
slow-moving UEs, longer intervals do not significantly impact radio quality. Therefore, as 
shown in Fig. II-7.3.1-1, we introduce an actor allocator (AA) to assign multiple slow-
moving UEs to the same actor. Since the learning model operates on a per-user basis, the 
actor with multiple UEs assigned performs inference sequentially. This increases the AP 
cluster update interval for the UEs. To avoid throughput degradation, the maximum 
update interval that does not degrade the radio quality is defined as the threshold interval. 
UEs are assigned to actors under the constraint that their AP cluster update interval does 
not exceed the threshold interval, minimizing the number of actors. This approach 
reduces the computational load of inference by relaxing the inference frequency. 
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Fig. II-7.3.1-1: AP clustering architecture with distributed DRL 

II-7.3.2.  MDP Model 
The design goal of the Markov decision process (MDP) model is to control the AP 

cluster size for a single UE to meet throughput requirements with the minimum AP 
cluster size. The action, reward, and state in the MDP model are defined as follows: 
 
1) Action 

The action specifies the increment or decrement in the AP cluster size. The action for 
UE 𝑘𝑘 is defined as 𝑎𝑎𝑘𝑘 = 𝛿𝛿𝑘𝑘 ∈ {−𝑒𝑒,−𝑒𝑒 + 1, … ,0 , … , 𝑒𝑒 − 1, 𝑒𝑒}. Here, 𝛿𝛿𝑘𝑘 represents the change 
in the AP cluster size for UE 𝑘𝑘 from the previous time step. 𝑒𝑒 denotes the maximum 
change in the AP cluster size in one time step. The AP cluster size |ℳ𝑘𝑘| is determined as 
|ℳ𝑘𝑘|= 𝛿𝛿𝑘𝑘 + |ℳ𝑘𝑘|pre, where |ℳ𝑘𝑘|pre represents the AP cluster size at the previous time 
step. The size of the action space |𝐴𝐴𝑘𝑘| is  2𝑒𝑒 + 1.  
 
2) Reward 

We use the following reward 𝑟𝑟𝑘𝑘, which consists of two factors: throughput satisfaction 
and the AP cluster size. 

𝑟𝑟𝑘𝑘 = 𝑞𝑞𝑘𝑘 × 𝑚𝑚𝑘𝑘

where 𝑞𝑞𝑘𝑘 and 𝑚𝑚𝑘𝑘 are defined as: 

𝑞𝑞𝑘𝑘 = �1 𝑔𝑔𝑘𝑘 ≥ 𝑔𝑔�𝑘𝑘 ,
0 otherwise. ,       𝑚𝑚𝑘𝑘 = �1 − |ℳ𝑘𝑘|

𝐵𝐵
�
3

 

𝑞𝑞𝑘𝑘 indicates throughput satisfaction, where 𝑔𝑔�𝑘𝑘 is the preset throughput requirement for 
UE 𝑘𝑘. If the throughput 𝑔𝑔𝑘𝑘 does not meet this requirement, the reward is 0. 𝑚𝑚𝑘𝑘 indicates 
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the AP cluster size factor. The computational load for signal processing is proportional to 
the cube of the AP cluster size |ℳ𝑘𝑘|. 𝑚𝑚𝑘𝑘 decreases in proportion to the cube of the AP 
cluster size. 𝐿𝐿 is the number of APs in the area. The reward is high when the throughput 
requirements are met with the minimum AP cluster size for UE 𝑘𝑘.  
 
3) State 

The state for UE 𝑘𝑘 is defined as 𝑆𝑆𝑘𝑘 = �|ℳ𝑘𝑘|pre,𝑔𝑔�𝑘𝑘 ,𝑈𝑈𝑘𝑘 ,𝑈𝑈𝑘𝑘
pre, 𝑗𝑗𝑘𝑘�. The previous AP cluster 

size |ℳ𝑘𝑘|pre is needed to determine the change in the AP cluster size from the previous 
time step. The throughput requirement 𝑔𝑔�𝑘𝑘 helps ascertain the required radio quality for 
the UE. 𝑈𝑈𝑘𝑘 = �𝑢𝑢𝑘𝑘,1,𝑢𝑢𝑘𝑘,2, … ,𝑢𝑢𝑘𝑘,𝑠𝑠 , … ,𝑢𝑢𝑘𝑘,𝐵𝐵�, where 𝑢𝑢𝑘𝑘,𝑠𝑠 is the RSRP from the b-th highest AP. 
𝑈𝑈𝑘𝑘
pre represents 𝑈𝑈𝑘𝑘 at the previous time step and helps to learn changes in the channel 

state due to UE mobility. To account for the impact of other UEs around UE 𝑘𝑘, we employ 
𝑗𝑗𝑘𝑘 as the count of overlapping APs in the AP cluster of UE 𝑘𝑘 and other UEs. 
 
II-7.4.  Simulation Evaluation 
II-7.4.1.  Simulation Conditions 

The main parameters for the numerical simulation are summarized in Table II-7.4.1-
1. We use a 1 km2 urban structure with 400 APs around Shibuya Station in Tokyo and 
employ channel data based on ray tracing. 100 UEs with different throughput 
requirements and velocities move randomly. The throughput requirements and velocities 
of each UE are randomly set from {50, 100, 150} Mbps and {0, 4, 30, 60} km/h, respectively.  

 
Table II-7.4.1-1: Simulation parameters 

Parameters Values 
RAN environment parameters 

Simulation area (max) 1 km×1 km at Shibuya in Tokyo 
Number of deployed APs, L 400 
Number of UEs, K 100 
Number of antennas in AP, N 1 
Frequency 3.5 GHz 
System bandwidth 100 MHz 
UE transmission power 20 dBm 
Large-scale fading Ray tracing 
Small-scale fading Rayleigh fading 
Noise figure 7 dB 
Number of pilot sequences, 𝜏𝜏𝑝𝑝 24 
UE movement speed, 𝜓𝜓𝑘𝑘 {0, 4, 30, 60} km/h 
User traffic Full buffer 

Throughput requirements, 𝑔𝑔�𝑘𝑘 {50, 100, 150} Mbps 
Time step length 50 msec 

GA parameters 
Population size 50 
Number of generations 200 
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Mutation rate 0.2 
DRL parameters 

Target network update intervals 2500 
Network parameters copy intervals 500 
Training batch size 512 
Discount factor 0.5 
Learning rate 0.00025/4 
Episode length 1000 time steps (50 seconds) 
Number of training episodes 100 
Number of test episodes 5 
Number of RSRP in state, B 20 
Variation range in action, e 2 

 
II-7.4.2.  Evaluated Methods 

In the simulation evaluation, we compare the following methods: 
 Static approach (SA): The AP cluster size for each UE is predetermined. To satisfy 

throughput requirements with 90% probability, we set AP cluster sizes of 5, 7, and 
13 for UEs with throughput requirements of 50 Mbps, 100 Mbps, and 150 Mbps, 
respectively. 

 Closed-loop control (CLC): If the throughput does not meet the requirements, the 
AP cluster size is increased. Conversely, if the throughput meets the requirements, 
the size is decreased. 

 Genetic algorithm (GA): We define the combination of the actions for each UE as 
an individual. The objective function is defined as the summation of rewards for 
all UEs. The parameters for GA are shown in Table II-7.4.2-1. 

 Distributed DRL (D-DRL): To validate the effectiveness of the AA, we introduce 
D-DRL without the AA. We adopt the architecture of D-DRL via the per-user 
model described in Section I-1.3. .  

 Distributed DRL With Actor Allocator (D-DRL with AA): This is a proposed 
method for applying AA to D-DRL. 

 
II-7.4.3.  Simulation Results 

Fig. II-7.4.3-1 shows the average throughput satisfaction rate, indicating the ratio of 
UEs meeting throughput requirements among all UEs. It is defined as ∑ 𝑞𝑞𝑘𝑘𝑘𝑘∈𝐾𝐾 /𝐾𝐾. SA, D-
DRL, D-DRL, D-DRL with AA, and GA maintain a throughput satisfaction rate of around 
90%. In SA, a fixed AP cluster size is set to satisfy throughput requirements with a 90% 
probability. In D-DRL and D-DRL with AA, the satisfaction rate is kept at the same level 
as that of SA, and approaches that of GA which obtain near-optimal solutions. CLC based 
solely on throughput feedback makes it difficult to consistently satisfy the throughput 
requirements.  
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Fig. II-7.4.3-2 presents the total computational load of signal processing, inference, 
training and GA. D-DRL and D-DRL with AA suppress the signal processing load 
compared with SA and CLC by selecting the minimal AP cluster size for each UE. In D-
DRL, actors are launched for each UE in parallel. This increases the inference load 
proportionally to the number of UEs. For D-DRL with AA, the inference load is lower than 
that of D-DRL because AA minimizes the number of launched actors and reduces the 
inference frequency. GA needs substantial computational resources for real-time AP 
clustering. The total computational load for D-DRL with AA is reduced by 29% compared 
with that of SA. The proposed method demonstrates AP clustering to facilitate scalability 
in large-scale environments. 

 
Fig. II-7.4.3-1: Throughput satisfaction rate 

 

 

Fig. II-7.4.3-2: Total computational load 
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II-7.5.  Conclusion 

In this paper, we introduced an AP clustering method using D-DRL to address the 
scalability issue. By employing the per-user model and distributed processing, we 
demonstrated that learning performance remains high with a small-sized model. 
Furthermore, by assigning UEs to actors on the basis of their movement speed, the 
inference frequency can be reduced. The overall computational load, including DRL and 
signal processing, was reduced by 29% compared with that of SA with a fixed AP cluster 
size. The proposed method achieves AP clustering that satisfies the throughput 
requirements with minimal computational load, even in large-scale environments. 
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II-8.  Cross-layer Access Control Techniques using AI 

Hiromichi TOMEBA and Osamu Nakamura 
Sharp Corporation 

 
Abstract— The demand for large-capacity, latency sensitive applications such as ultra-

high-definition video transmission is increasing in wireless communication systems. In 
high-demand applications such as ultra-high-definition video transmission, there is a 
problem that increasing the capacity of wireless communication does not necessarily lead 
directly to the realization of such applications. Therefore, to improve the number of 
applications that can be realized, we have studied the cross-layer access control 
techniques, which improves video throughput based on whether the requirements for 
ultra-high-definition video are satisfied, rather than conventionally called throughput, 
which is calculated from correctly received bits. In this contribution, we show the 
computer simulation and indoor filed trial results of the radio resource allocation 
techniques using the video throughput. 
 
II-8.1.  Introduction 

Transmission of ultra-high-definition images and videos is increasingly being adopted 
across in a variety of applications, including industrial fields such as image inspection, 
healthcare fields. This trend is expected to accelerate in coming years. In the beyond 5G 
era, it is necessary to facilitate the transmission of large-capacity and low-latency traffic 
generated by these applications through wireless communication networks. In particular, 
since ultra-high-definition video is expected to be predominantly used indoors, both the 
cellular networks and private local area networks (LANs) will play an important roles 
in supporting these high-demand applications. 

On the other hand, user experience is important for application accommodated. For 
high-demand applications such as ultra-high-definition video transmission, increasing 
the capacity of wireless communication does not necessarily lead directly to the effective 
support of these application [1]. Therefore, we have investigated a cross-layer 
collaborative access control technology that improves the video throughput with the 
requirements of video transmission considered [2]-[4]. These technologies demonstrates 
significant improvements in the number of applications accommodated compared to 
conventional throughput-based methods that consider the number of successfully 
transmitted bits, such as proportional fairness [5]. 

As mentioned earlier, considering application requirements contributes to increasing 
the number of applications that can be accommodated, but the requirements of each 
application are diverse. For example, even in ultra-high-definition video transmission, 
multiple requirements such as remaining buffer capacity and allowable delay time are 
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required. Naturally, since there are multiple users, the number of combinations of 
factors to be considered is enormous. Therefore, we have considered resource allocation 
using deep reinforcement learning, considering the use of machine learning. 

This contribution explain the concept of application layer throughput and show the 
simulation and experimental results． 
 
II-8.2.  System Model 

Conventionally, the throughput is generally used as a performance metric of wireless 
communication, which is calculated from the number of bits included in successfully 
received transmission packets (hereafter referred to as bit throughput). However, user 
experience is necessary for the accommodation of video applications, and it is required 
to satisfy the requirements of the applications. Therefore, it is important to use video 
throughput which is the throughput calculated from the received video packets 
satisfying the requirements as a performance metric [6]. Fig. II-8.2-1 shows an overview 
of video throughput. The requirements for video throughput are that periodically 
generated video packets must be correctly received within the allowable delay time. If a 
video packet cannot be transmitted within the allowable delay time, some of the correctly 
received transmission packets are counted as bit throughput, but they are not counted 
as video throughput. If the requirement of receiving a video packet within the allowable 
delay time is satisfied, the number of bits included in the video packet is counted as video 
throughput. 

In general, video data is divided into multiple video packets and transmitted. 
Conventional bit throughput is calculated from the number of bits included in 
successfully received transmission packets. Here, the bit throughput of the u-th user is 
𝑅𝑅𝑠𝑠𝑠𝑠(𝑇𝑇), and the video throughput is 𝑅𝑅𝑠𝑠𝑠𝑠(𝑇𝑇). 
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 (1) 

 
where T is the observation time, 𝐵𝐵𝑠𝑠𝑠𝑠(𝑡𝑡) is the number of bits correctly received by the u-
th user from time t-1 to t, and 𝐵𝐵𝑠𝑠𝑠𝑠(𝑡𝑡) is the video packet size correctly received by the u-
th user from time t-1 to t. 
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Fig. II-8.2-1. Relation between the application and physical layer throughput. 
 
In order to improve video throughput, it is necessary to appropriately allocate wireless 

resources by considering the infinite number of user conditions, such as remaining 
packet size, allowable delay time, allocatable wireless resource candidates, and their 
quality. Using the video throughput shown above as a metric, we have been studying the 
allocation of frequency bands in which each user exchanges frames and the allocation of 
available radio resources within the selected frequency band. 

Regarding radio resource allocation, two methods are considered: wideband (WB) 
resource allocation, which allocates the entire available wireless resource band to one 
user, and SB resource allocation, which divides the entire band into multiple subbands 
(SB) and allocates each SB to a user. In wideband transmission where frequency-
selective fading cannot be ignored, SB resource allocation is suitable for increasing the 
capacity of the system because it can provide user diversity effects. However, as the 
number of combinations increases relative to WB resource allocation, the complexity of 
scheduling also increases. 

For the SB resource allocation, we have studied the radio resource allocation 
techniques with the deep reinforcement learning (RL) using deep neural network (DNN) 
considering the user situation including the achievable the video throughput. In order to 
consider the video throughput, we set the reward r for RL expressed as  

 

𝑟𝑟 = �𝑟𝑟𝑠𝑠
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 , (2) 

 
where 𝑁𝑁𝑠𝑠, 𝑅𝑅�𝑠𝑠, and α are denote the video throughput of u-th user, average video rate, 
and threshold for the ratio of the current video throughput to the average video rate, 
respectively. The reward 𝑟𝑟 leads the number of applications accommodated increase.  
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Figure II-8.2-2(a) represents the assumed system model. In this simulation, we assume 
the downlink transmission using infrastructure mode where the single access point (AP) 
with 4 users. Simulation conditions are summarized below. The carrier frequency and 
the bandwidth are assumed as 5 GHz and 80 MHz. The candidates of the SB size are 20, 
40 and 80 MHz. The transmit power is 20 dBm. The antenna gain is 0 and -2 dBi for AP 
and each user. The standard deviation and noise figure are 5dB and 7 dB, respectively. 
The average video rate is 100 Mbps, where the video packet are periodically generated 
with 10 ms periodicity. The video traffic is generated using the wireless display model 
[8]. Other conditions follow the evaluation scenario of IEEE 802.11ax [7]. 

In the RL, the assumed learning algorithm is DQN. The number of epochs is set to 
200, and the learning model is updated every epoch.  Regarding STA placement, to 
acquire generalization performance, STAs are randomly placed between epochs during 
the learning process. In each epoch, 500 steps are executed.  The DNN for actor consists 
of an input layer, three hidden layers, and an output layer. Each hidden layer has 32 
nodes. The reward parameter 𝛼𝛼 of (2) is set to 0.25 based on simulations. Regarding STA 
placement, to acquire generalization performance, STAs are randomly placed between 
episodes during the learning process. 

Figure II-8.2-2(b) shows the cumulative distribution function (CDF) of video 
throughput of each user. For comparison, the conventional proportional fairness (PF), 
which consider the bit throughput, is also shown in Fig. II-8.2-2(b). It is noted that the 
maximum video throughput is not meet the average video rate since the video packet 
size is randomly generated. It is shown that the SB allocation of the video throughput is 
better than that of the WB allocation irrespective of the RL and PF. It is also seen from 
Fig. II-8.2-2(b), the RL can provide a better video throughput performance than the PF. 
From the simulation results, in terms of the number of applications accommodated 
(calculated as the number of users with an average video rate of 90% or more), RL using 
SB allocation can provide approximately 2.4 times better performance compared to PF 
using SB allocation. 
 

 
(a) Simulation model 
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(b) Video throughput of each user 

Fig. II-8.2-2. Simulation results. 
 
II-8.3.  Experimental Result 

We are conducting indoor propagation environment tests using a prototype that 
utilizes wireless LAN equipment for cross-layer access control technology based on deep 
reinforcement learning, which has demonstrated improvement effects through 
computational simulations [6]. The outline of the demonstration system is shown in 
Figure II-8.3-1(a). To simulate an AP capable of controlling multiple frequency bands, 
including the millimeter-wave band at 60 GHz, we connected multiple APs configured 
for each frequency band to a control PC (router PC), which was played as the prototype 
AP. The outline of the testing environment is illustrated in Figure II-8.3-1(b). Assuming 
a medium-sized conference room, the prototype AP was placed in a corner of the 
environment, and users equipped with video receivers were positioned at points labeled 
1-th to 10-th in Figure II-8.3-1(b). Each user supports 2.4/5/6 GHz, with users at points 
1-th and 2-th specifically supporting 60 GHz as well. 

In each frequency band, excluding the 60 GHz band, the available bandwidth is set to 
20 MHz, while the 60 GHz band is set to 2.16 GHz. The average video rate is assumed 
as 60 Mbps. Additionally, to simulate interference from other systems, a pair of access 
points (APs) and users as interference sources are separately deployed, generating an 
average interference traffic of 100 Mbps in the 6 GHz band. 

The decoded results of the video packets transmitted to each user are fed back to the 
prototype AP as video throughput. The deep reinforcement learning PC determines the 
frequency band allocated to each user based on the feedback, allowing for the evaluation 
of performance characteristics. For comparison, a scenario is also tested where the 
frequency bands are selected randomly without employing reinforcement learning based 
on video throughput. 
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Figure II-8.3-1(c) presents the cumulative distribution function (CDF) of the number 
of users that can be accommodated, where the number of accommodated users is defined 
as those satisfying the average video rate of 60 Mbps. As illustrated in Figure II-8.3-1(b), 
when utilizing deep reinforcement learning, an improvement of approximately 2.5 times 
at the CDF 50% value and approximately 2 times at the CDF 90% value is observed 
compared to the random selection scenario. It can be confirmed that deep reinforcement 
learning effectively adapts to the propagation environment and the achievable video 
throughput. 

 

  
(a) Experimental system model 

 
(b) Test environment 

 
(c) Experimental result 

Fig. II-8.3-1. Simulation results. 
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II-8.4.  Conclusion 

This contribution shows the concept of application layer throughput for improving the 
number of accommodated users. We show the simulation and experimental results and 
the application layer throughput can improve the number of accommodated users. 
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II-9.  AI-based Application-aware RAN Optimization 

Eiji Takahashi, NEC Corporation 
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Yoshiaki Nishikawa, NEC Corporation 
 

Abstract— It has become increasingly important for industries to promote digital 
transformation by utilizing 5G/6G, Internet of Things (IoT), and Artificial Intelligence 
(AI) to realize a highly productive and prosperous society. In addition to conventional 
policies of improving the average Quality of Service (QoS) at each mobile coverage area, 
there is an increasing need to strengthen policies that precisely adhere to QoS 
requirements per User Equipment (UE) and in real-time to enable the stable use of 
applications at high-performance levels, e.g., work speed or productivity. The Open 
Radio Access Network (Open RAN), specifically standardized by the O-RAN Alliance (O-
RAN), offers significant potential to enable flexible resource management to address 
diverse QoS requirements. This article introduces an application-aware RAN 
optimization method that can support such policies based on O-RAN architecture. 
 
II-9.1.  Introduction 

Because of the labor shortage and the decrease in skilled workers due to the declining 
birthrate and aging population, there is an increasing need to replace humans with 
machines in several tasks to solve social issues. Accordingly, there is a need for 
automation, remote monitoring/control, and labor-saving by promoting digital 
transformation through the utilization of 5G/6G, IoT, and AI to realize a highly 
productive and prosperous society [1][2][3][4]. In digital transformation, many use cases 
require mobility and ease of equipment installation, making reliable wireless 
communication essential. To enable the stable use of applications at high-performance 
levels, e.g., work speed or productivity, often results in stricter QoS requirements. Thus, 
in addition to policies aimed at improving the average QoS at each mobile coverage area, 
there is an increasing need to strengthen policies that precisely adhere to QoS 
requirements for each UE in real-time.  

Application developers often design applications based on current wireless 
communication standards, whereas innovative developers focus on application goals first 
and then address communication issues through trial and error. Customized 
communication infrastructures are often required for specific applications, which are not 
scalable for widespread 5G/6G adoption. To this end, the RAN must be autonomously 
and adaptively controlled based on the application, network, and site conditions. 
Emerging trends like Open RAN, specifically standardized by the O-RAN [5][6], offer 



 
 
 

 95 

significant potential to enable flexible resource management to address diverse QoS 
requirements.  

This article introduces an application-aware RAN optimization method based on the 
O-RAN architecture to support such policies [7][8]. 
 
II-9.2.  AI Native Open RAN 

Open RAN is the concept of disaggregating functions within the RAN, enabling the 
various hardware and software functions that make up the RAN to be provided in a 
multi-vendor, interoperable environment. Open RAN is an ongoing shift in mobile 
network architectures for operators to introduce non-proprietary subcomponents from 
various vendors that adhere to a set of industry-wide standards that telecom suppliers 
can follow when producing related equipment. The O-RAN is a worldwide community of 
operators and vendors with a mission to reshape RAN to be more open, virtualized, and 
fully interoperable. One of the key advantages of Open RAN is the introduction of greater 
automation and intelligence into networks. The use of AI-driven capabilities and 
virtualized computing and distribution functions will lead to a significant reduction in 
hardware-dependent systems. The introduction of other functions, such as "rApps" 
running on non-real-time and "xApps" running on near-real-time RAN Intelligence 
Controllers (RIC) platforms, will help operators intelligently monitor and manage their 
networks. 

Many operators and vendors have provided their visions for 6G. Most of these visions 
emphasize two critical points: automation and the need for 6G to be “AI native”. Given 
the higher speeds and lower latencies involved, most anticipate even more automation 
and intelligence in 6G. The plans for solutions that 6G will support are already being 
developed today in Open RAN, which is expected to serve as a critical architectural 
foundation for 6G, much like virtualization is a foundational element for 5G RAN today. 

Delivering new 5G/6G solutions to new markets requires collaboration with industry 
vertical vendors and other specialist vendors, which in turn requires the open 
architecture and collaborative models that Open RAN provides. A good example is that 
mobile operators struggled in the past to provide bespoke solutions that could meet the 
specific needs of individual enterprises. With 5G/6G and Open RAN capabilities, it is 
now possible to deliver services that are tailored to the individual enterprise’s needs and 
create new business opportunities for operators. 
 
II-9.3.  Application-aware RAN Optimization 

The industrial use case is considered to ensure the uninterrupted transport of 
materials at the factory/warehouse floor utilizing Autonomous Mobile Robots (AMRs). 
Regarding latency, availability, and determinism, communication services for remote-
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control applications must fulfill stringent requirements. In these applications, cyclic two-
way communication is essential for monitoring robot status and sending control 
instructions. If the latency exceeds a certain threshold, the system will safely stop to 
ensure safety. While fail-safes are essential for maintaining safety, frequent occurrences 
of these fail-safes can lead to decreased facility utilization and productivity. 

The application-aware RAN optimization method utilizes AI to analyze the 
communication requirements and radio quality fluctuations for individual UEs, 
including robots and vehicles. Based on this analysis, the AI dynamically adjusts RAN 
parameters for each UE to optimize performance. This AI learns from past operational 
records of robots and vehicles to optimally control the RAN parameters. It adjusts RAN 
parameters such as the target block error rate, the allocation ratio of physical resource 
blocks, and the allowable additional delay while predicting the likelihood of exceeding 
communication latency requirements. In typical 5G networks, RAN parameters are fixed 
and configured for the entire network. However, the proposed method dynamically 
adjusts them per-UE basis to improve application productivity. The architecture is 
shown in Fig. II-9.3-1. The proposed method can perform the following tasks for each UE 
basis in near-real-time: 1) estimating application QoS requirements based on 
information supplied by the external application server, 2) predicting fluctuations in 
wireless quality using radio quality data from the central unit (CU) and distributed unit 
(DU), and 3) proactively optimizing CU and DU parameters. While running machine 
learning, the system ensures that accuracy is uncompromised. If a risk is detected, it 
switches to a stable logic-based engine. This technology guarantees stability in RAN 
control by switching engines. 

 

 
Fig. II-9.3-1 Architecture 

 
II-9.4.  Evaluation 

The simulation was conducted in which a server remotely controlled mobile robots over 
a 5G network indoors. We developed and utilized a precise simulator consisting of 
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mobility, radio propagation, and network simulators. The timeliness and availability of 
communication services were evaluated in the context of mean time between failures in 
mobile robot operations, one of the critical key performance indicators defined by 3GPP 
for this type of traffic. The proposed method optimizes RAN parameters, including the 
target block error rate, the allocation ratio of physical resource blocks, and the allowable 
additional delay each component can endure on a per-UE basis in near real-time. The 
proposed method was compared with the conventional method in which these 
parameters are fixed to default values. The simulation conditions are shown in Table II-
9.4-1. 
 

Table II-9.4-1 Simulation Conditions 
The number of gNodeBs, cells 1, 1 
Frequency, band 4.8 [GHz], n79 
Bandwidth 100 [MHz] 
Subcarrier spacing (SCS) 30 [kHz] 
Duplex TDD 
Downlink to Uplink ratio 1:1 
Transmission power 23 [dBm] 
Floor area 100 [m] x 100 [m] 
Floor layout layout assuming a factory 
The number of simultaneously running robots up to 18 
Robot running speed up to 3 m/s 
Traffic per robot downlink: up to 150Kbps 

uplink: up to 1 Mbps 
 
Fig. II-9.4-1 shows the simulation results regarding the relative frequency of unmet 

QoS requirements per packet in an environment where both QoS requirements and radio 
quality fluctuate based on field conditions, such as driving speed and surrounding 
circumstances. Our method significantly reduced the number of packets failing to meet 
QoS requirements, achieving less than 1/50 compared with the conventional method. In 
other words, the number of system outages due to communication issues in mobile robot 
operations was significantly decreased, effectively improving the mean time between 
failures by a factor of 50. 
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Fig. II-9.4-1 Simulation Results 

 
II-9.5.  Future Vision 

Conventionally, IoT devices are equipped with intelligent functions specific to their 
vendor or model, and the IoT controller software is also tied to a particular vendor and 
model. When AI (for RAN) and 5G/6G realize an adaptive and reliable wireless 
communication environment with low latency, intelligent and high-load data processing 
will be possible on the cloud or edge server. This makes it easier for the IoT controller 
installed in the cloud or edge server to control IoT devices of multiple vendors 
coordinately and for various models to optimize the entire system. Furthermore, 
achieving simplification, lightweight implementation, and generalization of IoT devices 
will likely drive the spread of IoT solutions and, as a result, accelerate the developments 
in IoT applications and AI (for IoT). 
 
II-9.6.  Conclusion 

Mobile network specifications will become more sophisticated in the 5G/6G era. 
However, intelligent network optimization during operation will be essential for 
adapting to the evolving conditions of applications, networks, and sites. An application-
aware RAN optimization method based on Open RAN architecture was introduced to 
ensure strict QoS requirements across various vertical domains while accommodating 
diverse application needs and fluctuations in wireless quality. The simulation results of 
applying the proposed method to a system that remotely controls multiple autonomous 
robots operating in factories/warehouses confirmed that the number of robot stoppages 
could be reduced by 98% or more compared to the scenario where the method was not 
utilized. 

Advancements in AI (for RAN) and 5G/6G technologies aim to deliver adaptive and 
reliable wireless communication that meets the QoS requirements of various 
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applications. These improvements will facilitate sophisticated and high-load data 
processing on cloud or edge servers. Additionally, they will enhance the management 
and optimization of IoT devices from diverse vendors, simplifying these devices to 
accelerate the development of AI (for IoT) and IoT applications. This, in turn, will 
promote the broader adoption of IoT solutions. 
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II-10.  AIOps for Autonomous Network 
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Abstract— This report provides an overview of Autonomous Networks expected to be  
realized in Beyond 5G. Furthermore, this report describes the details of network  
operation by AI, which is a necessary element of the Autonomous Network, and  
especially summarizes the strategy for managing network failures, and provides the  
overall framework required for future network operation. 

 
II-10.1.  Introduction 

The fundamental role of the mobile network is to provide connectivity for user 
equipment (UE). Furthermore, to achieve high-quality mobile service, the network must 
meet the quality requirements of UE and the web services with which UE communicates. 
In traditional network operations, human operators have played this role. Operators 
install the network equipment, such as base stations and servers, that constitutes the 
mobile network, configure them appropriately, and replace them in the event of failures. 
These critical tasks enable the mobile network to meet these quality requirements 
around the clock.  

In recent years, there has been a lot of standardization, research, and development 
activities on Autonomous Networks [1,2], where the network autonomously performs 
these tasks traditionally performed by human operators. As shown in Fig. II-10.1-1, in 
the Autonomous Network, the network's configuration and control are managed 
autonomously based on Intent information, which represents the requirements of actual 
users of the network.  

Intent is more abstract information than policy, rules, and logic regarding the network 
and represents an intention and expectation of the network's user. In the example in Fig. 
II-10.1-1, the operational system, which consists of the Business Support System (BSS) 
and the Operation Support System (OSS), receives an Intent from a user who wants to 
launch a 4K streaming service in Tokyo, divides the Intent into each network domain, 
translates it into an actual network control policy, and requests it to each network 
domain. In some cases, Intent may also be sent directly to a domain controller that 
controls each network domain without being translated into a policy in the operational 
system. Since the domain controller has a more detailed understanding of the 
operational data of each network domain, a more detailed and accurate policy translation 
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can be expected. Each domain controller implements control of the relevant network to 
ensure the quality specified in the policy. 
 
II-10.2.  AIOps and Autonomous Network 

Artificial Intelligence for IT Operations (AIOps) is essential for achieving Autonomous 
Networks. As described in the above section, in Autonomous Networks, it is necessary to 
translate abstract Intent received from users, e.g., “I want to launch a 4K streaming 
service in Tokyo”, into concrete policies and rules, e.g., “Creating MPLS-TE paths with 
30~Mbps transfer capability”. Intent allows different users to request network services 
without using a technical language that they do not usually use, such as a programming 
language. However, user Intent varies widely, making traditional fixed rule-based 
translation difficult. Furthermore, it is essential to build the network policy translated 
from the Intent on the network infrastructure (RAN, Transport Network, and Core) and 
to deal with network failures without human operators. To address such issues, AIOps 
for Autonomous Networks requires three key elements: 1. Intent translation, 2. Network 
resource management, and 3. Network failure management. 

In 1. Intent translation, users' abstract Intent is translated into a specific network 
policy. Generative AI and the Large Language Model (LLM), which have been actively 
researched and developed for practical use in recent years, can be applied to this process. 
Furthermore, the interaction between a user and AI is beneficial not only for 
understanding the user's needs but also for negotiating with the user, for example, 
negotiating alternative proposal by AI when network resources are insufficient. 

In 2. Network resource management, based on the converted network policy, network 
resources are reserved, and the user-requested network service is created and provided 
to the user. An optimal resource allocation placement is determined to satisfy the 
network policy, and network elements (e.g., virtual mobile core, MPLS-TE path, virtual 
CU/DU) that constitute the user's network service are generated on demand. In addition, 
network resources are not always prepared enough to always satisfy all user requests 
and accommodating them may not be possible. In such cases, admission control of user 
requests is necessary, and based on the request status (new requests, cancellations), 
decisions must be made to maximize the profit of the network operator, and automated 
decision-making, such as Deep Reinforcement Learning, can be applied [3]. 

Finally, in 3. Network failure management, when a network failure (e.g., HDD failure, 
link down, restart) occurs in the created user network service, a series of processes that 
detect the failure event, identify the root cause, and resolve the issue are implemented. 
Various AI technologies, such as anomaly detection and classification, are being 
considered and introduced. The next section of this report describes the detailed 
technical aspects obtained through our research results. 
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Furthermore, with the remarkable development of LLM technology in recent years, it 
is expected that R&D and standardization of Agentic AI, in which AI Agents with LLM 
functions autonomously provide instructions and reports on each task while interacting 
with human operators, will accelerate over the coming years. 
 
II-10.3.  Network Failure Management by AIOps 

Our proposed integrated framework [4] for network failure management with AIOps 
is shown in Fig. II-10.3-1, including data collection, anomaly detection, and fault 
recovery functions. The framework has three phases: the data collection for AI model 
training, the AI model training phase for AIOps, and the AI model inference phase from 
actual operational data. Firstly, in the data collection phase, the network devices, such 
as servers and routers, that consist of the operation target network send statistical data. 
Typical statistical data include CPU, memory, network, and other resource utilization 
rates. Furthermore, user utilization data (e.g., # of sessions) related to mobile network 
software such as PGW and UPF is also included. In addition, we have proposed a method 
for anomaly detection and prediction based on Observability with Linux eBPF, which is 
frequently used in cloud-native environments [5,6]. Since data is essential for training 
highly accurate AI models, more detailed data describing system behavior, such as eBPF, 
will be required in future mobile networks. 

Secondly, in the AI model training phase, AI models are trained from operational data, 
such as CPU utilization rate and trouble tickets, obtained in the target network. Since 
network failures are infrequent events in production networks, sufficient operational 
data for AI models may not be obtained. Therefore, a test network simulating the 
production network can be created to train precise AI models, and operational data 
obtained from pseudo network failure generated in the test network can be utilized as 
input data for the AI model. 

Finally, in the AI model inference phase, the trained AI model detects a root cause of 
network failure from the latest operational dataset and suggests an optimal recovery 
workflow from the network failure, with anomaly detection and fault recovery function. 
The anomaly detection function detects network failures and determines their root 
causes. Within this framework, we have evaluated a comparative experiment that 
involved measuring the performance of the fault analysis function using three AI 
algorithms, multi-layer perceptron (MLP), random forest (RF), and support vector 
machine (SVM), on the testbed network built by the virtualized network functions 
(VNFs) [7]. RF showed the highest accuracy, and F1 scores for three network failures: 
compute node down, network interface down, and CPU overload were 1.00, 0.96, and 
0.95, respectively. This difference in accuracy by AI algorithms is likely due to the 
dataset generated from the performance management (PM) data, and the increase in 
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training data, feature reduction, or balance adjustment of normal/abnormal samples 
affected the accuracy.  

Furthermore, we have proposed a scheme for fault recovery using reinforcement 
learning (RL) [8]. The scheme can adapt to network topology and configuration changes 
and has a data representation procedure to prepare a data set for RL, which is formed 
as a matrix of network topology and fault state. The simulation results showed that 
preparing enough training data requires a tremendous amount of failure injection and 
recovery operation trials. The test network simulating the production network can 
potentially shorten the time for trials in the training process. However, our simulation 
also revealed that the behavior between the test network and the production network 
infrastructures should be 87% coincident for application to the proposed scheme. 
 
II-10.4.  Conclusion 

This report described an overview of Autonomous Networks and AIOps. To benefit 
from the convenience brought by Autonomous Networks, it is necessary to introduce the 
concept of such Autonomous Networks and AIOps as the network architecture for 
Beyond5G system. More specifically, it is essential to have architectural support to 
create an end-to-end network instance and control user policies on the network instance 
based on user Intent. Furthermore, the Beyond5G system also needs to centrally manage 
operational data from the RAN, Core, and Transport Network in an integrated way and 
automatically train and deploy the optimal AI model for AIOps. 

 

 
Fig. II-10.1-1 General concept of Autonomous Network 
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Fig. II-10.3-1 AIOps framework for Network Failure Management 
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II-11.  Logic-oriented Generative AI Technology for Autonomous Networks 

Takayuki Kuroda (NEC) 
 

Abstract— Autonomous network operation technology based on intent has been 
attracting attention toward advanced automation of network operation. However, the 
realization of intent translation, which is the key to this technology, faces the challenge 
of achieving both flexibility and faithfulness. In this paper, we propose a logic-oriented 
generative AI for intent translation, which is a logical search engine enhanced by AI/ML 
technology. This paper presents the position of our proposal with respect to related 
techniques, and then briefly outlines its method. 
 
II-11.1.  Introduction 

Modern networks continue to grow in complexity. Their rapid and stable provision is 
becoming increasingly difficult, and a high degree of operational automation is required 
[1][2]. Intent-based networking is one of the promising foundational approaches to 
automate network operations [3]. Intent is information that expresses requirements in 
an abstract and declarative manner. According to intent-based automation techniques, 
a machine interprets the intent and performs the construction and operation of the 
network. This allows users to easily build the desired network by simply entering high-
level requirements without having to enter detailed information. 

To realize such a technology, the ability to translate intent into concrete network 
configurations is essential. This translation corresponds to the design of the network and 
requires complex logical thinking. Conventional techniques for intent translation are 
known to be based on deductive engines [5]. Another possible approach is to use an 
inductive inference function, such as LLM. However, the former has a problem with the 
flexibility of possible answers. The latter has been pointed out to have a problem of 
faithfulness [6]. Therefore, we propose a mechanism that combines a deductive engine 
and an inductive AI so that the engine can search for effective solutions from a large 
solution space at high speed, thereby achieving both flexibility and faithfulness. In this 
paper, we describe the challenges of existing methods and outline the proposed technique. 
 
II-11.2.  Automation of Intent Translation and Its Challenges 

Intent-based networking is a new technology that provides an abstraction layer for 
network control [4]. It allows users to control the network by directing the desired state 
of network services instead of telling them how to configure network services. There are 
various issues to realize this technology, including the means to appropriately express 
the various network-related intent, the means to disambiguate them, and the means to 
concretize the abstract intent so that they can be deployed in practice. Among these 
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issues, the means to derive concrete network configuration from abstract Intent, i.e., 
translation, is a key issue in realizing Intent-based networking. Figure II-11.2-1 shows 
an overview of intent translation. The intent in this research consists of functional and 
non-functional requirements for the network and/or network function to be constructed. 
The intent translator is based on such intent information and complements it by 
concretizing the details necessary for the function to work. 
 

 
Fig. II-11.2-1 Concept of automated network intent translation. 

 
Two typical approaches to realize intent translation can be considered: deductive and 

inductive. In the deductive approach, the technique described in [5], the intent is refined 
step by step by applying predefined patterns, and a reasonable proposal of network 
configuration that satisfies the intent is searched among the possible proposals that can 
be generated. Flexibility is generally an issue with such a technique. That is, the solution 
is limited to specific patterns defined in advance. Although a variety of solutions can be 
generated by combining the patterns, it is necessary to manually align the rules to select 
a reasonable proposal from among them. In contrast, inductive approaches, such as the 
Large Language Model (LLM) can be utilized. Using LLM, it is expected that some 
answers can be obtained for any intent. However, LLMs are known to often give wrong 
answers and are not particularly good at thinking that involves logic, such as network 
design [6]. Thus, a deductive approach has faithfulness but lacks flexibility, while an 
inductive approach has extremely high flexibility but has problems with faithfulness. 

In response to this situation, in the area of LLM, a method to increase logical accuracy 
by dividing thinking into detailed steps has been proposed in recent years, and a number 
of services are already available. This is a method that adds a deductive element to 
inductive methods and improves logical accuracy while maintaining flexibility. On the 
other hand, this paper proposes a method to improve flexibility while maintaining logical 
validity by adding inductive elements to the deductive method described above. 
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II-11.3.  Intent Translation with Logic-oriented Generative AI 

The left side of Figure II-11.3-1 shows our proposed concept of intent translation with 
logic-oriented generative AI. The method is based on a deductive engine, whose search 
is guided by a GNN-based AI, which we refer to as the design AI. The deductive engine 
repeatedly refines the intent in stepwise manner. At each step, the design AI evaluates 
the multiple proposals generated and selects the most promising proposal as the next 
proposal to be refined. The learning of the design AI can be performed by a reinforcement 
learning algorithm. An overview is shown on the right side of Figure II-11.3-1. It learns 
the promise of a configuration proposal by generating expected returns based on the 
values obtained by evaluating the results of the design trials. As the learning proceeds, 
we can observe an increase in the success probability of the trials. The learning process 
is terminated when the improvement in the learning success probability comes to a head. 

 

 

Fig. II-11.3-1 concept of automated intent translation and its learning. 
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Fig. II-11.3-2 Example of one step refinement of network intent and evaluation 

model. 
 
The validity of the design results of this technique is guaranteed by the constraints. 

Figure II-11.3-2 shows how, together with a network topology, the processing flow to 
perform the functions of the network is embodied in one step. For example, a Turn 
Around Time (TAT) non-functional requirement is evaluated by summing the time for 
each process based on the processing flow and verifying that it falls within the time 
specified as intent. 

However, such a verification can only be performed once the design has been fully 
concretized. This fact has been a factor prolonging the search time, but the use of design 
AI can solve this problem. In the search process, it is important to make the right choice 
in the early stages as much as possible. This is because if a wrong decision is made in 
the initial stage, many trial and errors will have to be made again. In other words, the 
initial decision has a larger search space for later stages. However, as Figure II-11.3-2 
shows, TAT cannot be accurately determined until the last step. The incomplete 
processing flow shown in the upper right corner of Figure II-11.3-2 does not include some 
of the processes, and TAT cannot be calculated correctly. In other words, it is difficult to 
efficiently search a huge search space using logic alone. Instead, the design AI estimates 
the final TAT value from an early stage of the design process. This allows the search to 
be properly guided. On the other hand, constraints are essential to validate the obtained 
design results and to calculate accurate rewards during training. 
 
II-11.4.  Conclusion 

In this paper, we introduced a technology to realize intent translation, which is a key 
element of intent-based networks. In particular, we described a logic-oriented generative 
AI that uses AI/ML technology to enhance the logical search engine in the design of 
network configurations to achieve both flexibility and faithfulness. In the future, we will 
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continue to refine the technology and make it practical, as well as develop methods for 
accelerating learning and automating model development. 
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II-12.  In-Network Learning for Distributed RAN AI, ~Distributed LLMs via Latent 
Structure Distillation~ 
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Huawei Technologies 

 
Abstract— This paper proposes a distributed learning algorithm, named In-Network 

Learning (INL) for inference over wireless radio access networks (RANs) without 
transmitting raw data. The applied algorithm is suitable for both multimodal and 
heterogeneous data where the fusion of features extracted in a distributed manner. It also 
offers substantial gains over state-of-the-art (SOTA) solutions such as Horizontal and 
Vertical Federated Learning (FL) and Horizontal and Vertical Split Learning (SL) in terms 
of both accuracy and bandwidth requirements. This eventually discuss how the algorithm 
can be extended to support the deployment of LLMs and knowledge distillation in wireless 
networks. 
 
II-12.1.  Distributed inference over Wireless RANs 

RANs have important intrinsic features that may pave the way for cross fertilization 
between machine learning (ML) and communication. This is in contrast to simply 
replacing one or more communication modules by applying ML algorithms as black boxes. 
While relevant data is generally available at one point in areas such as computer vision 
and neuroscience, it is typically highly distributed across several sites in wireless 
networks. Such examples also include channel state information (CSI) and/or the so-
called radio-signal strength indicator (RSSI) of a user's signal, which can be used for 
things like localization, precoding, or beam alignment [1]. 

 
Conventional common approach for implementing ML solutions involves collecting all 

relevant data at one site (e.g., a cloud server or macro BS) and then training a suitable 
ML model using all available data with ample processing power. However, this approach 
may not be suitable in many cases due to large data volume size and scarcity of resources, 
including power and bandwidth consumption. Additionally, some applications (e.g., 
automatic vehicle driving) asked stringent latency requirements that are incompatible 
with data sharing. In addition, it might be desirable not to share the raw data in order 
for user privacy. Furthermore, edge devices such as small BSs, on-board sensors, and 
UEs typically have limited memory and computational power. Also, the wireless 
environments are typically prone to change rapidly, e.g., fluctuate connectivity and 
occasional joining/leaving devices. Data dynamics is another criticality, where the data 
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become more multimodal and heterogeneous across devices and users. Table-II-12.1-1 
summarizes the main features of inference over wireless RANs. 

 
II-12.1.1.  AI at the Wireless Edge 

The challenges above mentioned have faced a new paradigm called "edge learning" 
and/or distributed learning, where intelligence moves from the center to its network 
edges. In such scenario, the system design plays a central role because both data and 
computational resources are highly distributed. The goal of distributed inference over 
RAN is to make decisions on one or more tasks, at one or more sites, by exploiting the 
available distributed data. In this 
framework, multiple devices (e.g., 
BSs and UEs) are each equip with a 
neural network (NN). Some of the 
devices possess data they have 
acquired through communication or 
sensing, whereas some only 
contribute to the collective 
intelligence through computational 
power, as in Fig. II-12.1.1-1. 

 
II-12.1.2.  Brief Review of SOTA Algorithms 

AI solutions for RANs can be classified according to whether only the training phase 
is distributed (such as Horizontal Federated Learning and Horizontal Split Learning) or 
both the training and inference (or test) phases are distributed (such as Vertical 
Federated Learning). 
 

● Horizontal Federated Learning (HFL): HFL would be the most popular distributed 
learning scheme [2]. It is considered most suitable for settings in which the training 
phase is performed in a distributed manner while the inference phase is performed 
centrally. During the training, each client equips a distinct copy of a same NN model 
where the client trains on its local dataset. The learned weight parameters are then 

Table II-12.1-1. Summary of the main features of inference over wireless RAN 

Fig. II-12.1.1-1 Distributed inference over RAN 
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sent to and aggregated by (e.g., their average is computed) a cloud server or 
parameter server (PS). This process is repeated, each time using the obtained 
aggregated model for reinitialization, until a convergence found. The advantage of 
this approach ensures the model is progressively adjusted to account for all 
variations of the data, not only those of the local dataset. 

● Vertical Federated Learning (VFL) [3]: VFL is a variation of FL, the data is 
partitioned vertically and both the training and inference phases are distributed. 
Fig. II-12.1.2-1 illustrates the data structure in HFL and VFL respectively. In this 
case, client device holds whole 
data that is relevant for a 
possibly distinct feature. A 
prominent application example 
can be seen where the data is 
heterogeneous across clients 
and/or multimodal. In VFL, 
different clients may apply 
distinct NN models that are 
tailored for their own data 
modalities. These models are 
trained jointly to extract 
features that are collectively 
enough to make a reliable decision at the fusion center, as in Fig. II-12.1.2-2a. For 
recent advances on VFL and its applications in wireless settings can be also find in 
[4, 5] with the references. 

Fig. II-12.1.2-1 HFL (left) and VFL (right) 

structure 
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● Split Learning (SL) [6]: Similar to FL, it has two variations: Horizontal SL (HSL) 
and Vertical SL (VSL). VSL was introduced earlier than VFL, now it can be viewed 
as a special case of a VFL. For HSL, a two-part NN model is split into an encoder 
part and a decoder part. Each 
edge device possesses a copy of 
the encoder part and both NN 
parts can be learned 
sequentially. The decoder does 
not have its own data, whereas 
in every training round, the NN 
encoder part is fed with the 
data of one device and its 
parameters are initialized 
using those learned from the 
previous round. Then, during 
the inference phase, the 
learned two-part model is 
applied to centralized data. 

 
II-12.2.  In-Network Learning 

The roots of In-Network Learning (INL) can be seen in [7, 8], with further development 
have been also taking place in [9–11]. INL is the most expected ML scheme for 
distributed inference in heterogeneous and multimodal data. This scheme assuming 
every device equips an NN. During the inference process, each device independently 
extracts suitable features from its input data for a given inference task. These features 
are then transmitted over the network and converged at a given fusion center in order 
to obtain a reliable decision. These devices that hold useful data (these devices play the 
role of encoders) perform individual feature extraction independently from each other. 
Through the training, algorithm ensures that the encoders only extract complementary 
features, for instance, redundant inter-device features are removed, which enabling 
substantial bandwidth savings. The key technical characteristics in this algorithm are 
listed as follows: 
 
 Network Feature Fusion: INL fuses features that are extracted in a distributed 

manner at a fusion center so, collectively they enable a desired decision to be made 
at the fusion center after being transmitted over the network. 

 Feature Redundancy Removal: A distinguishing factor of INL is that, during 
inference, the encoders only extract non-redundant features and they are trained 

Fig.II-12.1.2-2 Feature redundancy removal by INL 
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during training phase. Specifically, during inference process, each encoder only 
extracts features that are useful for a given inference task from its input-data while 
also considering the other features extracted by other encoders. 

 Feature Extraction Depends on Network Channel Quality: Encoder feature 
extraction also considers the quality of the channel to the fusion center. Hence, the 
features are extracted only to the extent that is possible to transmit them reliably 
to the decision maker. 

 Satellite Decoders: The fusion center is equipped with a main decoder and satellite 
decoders, which are trained to make soft decisions based on the individual features 
transmitted by the encoders, the system is depicted in Fig. II-12.1.2-2b. 

 
II-12.3.  Preference Gains 

This section compares the algorithm performance on INL versus HFL and HSL in 
terms of achieved accuracy and the bandwidth requirements. 

 
Experiment 1: We prepare five-sets of noisy versions of images obtained from the 

CIFAR-10 dataset [12]. The images are first normalized, and then corrupted by additive 
Gaussian noise with standard deviation (σ) is set respectively to 0.4, 1, 2, 3, 4. For INL, 
each of the five input NNs are trained on a different noisy version of the same image. 
Each NN uses a variation of the VGG network of [13], with the categorical cross-entropy 
as the loss function. The 
architecture is shown in Fig. 
II-12.3-1. In the experiments, 
all five noisy versions of every 
CIFAR-10 images are 
processed simultaneously, 
each by a different NN at a 
distinct node. 

 
Subsequently, the outputs 

are concatenated and then passed through a series of fully connected (FC) layers at node 
(J + 1). For HFL, each of the five client nodes is equipped with the entire network of Fig. 
II-12.3-1. The dataset is split into five sets of equal sizes, with the split being performed 
such that all five noisy versions of a given CIFAR-10 image are presented to the same 
client NN (note: however, that distinct clients observe different images). 

 

Fig. II-12.3-1, NW architecture. Convolutional layer & Fully 

connected layer 
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For HSL, each input node is equipped with an NN formed by all five branches with 
convolution networks (i.e., the entire network shown in Fig. II-12-3-1, except the part at 
Node (J + 1)). Furthermore, node (J + 1) is equipped with fully connected layers at Node 
(J + 1). Here, the processing during training is such that each input NN vertically 
concatenates the outputs of all convolution layers and then passes that to node (J + 1), 
which then propagates back the error vector. After one epoch at one NN, the learned 
weights are passed to the next client, 
which performs the same operations on 
its part of the dataset. 

Fig. II-12.3-2 shows the amount of 
data needed to be exchanged among the 
nodes (i.e., bandwidth resources) in 
order to get a prescribed value of 
classification accuracy. It can be 
observed that our INL requires 
significantly less data transmission 
than HFL and HSL for the same 
desired accuracy level. 

 
Experiment 2: In the previous experiment, the entire training dataset was partitioned 

differently for INL and HFL in order to 

account for their unique characteristics. 
In the second experiment, they are all 
trained on the same data. Specifically, 
each client NN sees all CIFAR-10 images during training, and its local dataset differs 
from those seen by other NNs only by the amount of added Gaussian noise (withσis set 
respectively to 0.4, 1, 2, 3, 4). Also, to ensure a fair comparison of the three schemes, INL, 
HFL, and HSL, we set the nodes to utilize the same NNs fairly for each of them in Fig. 
II-12.3-3.  

Fig. II-12.3-2 Accuracy vs. bandwidth cost for Experiment-1 

Fig.II-12.3-3 Used NN architecture for 

Experiment-2 

Fig.II-12.3-4 Accuracy vs. bandwidth cost for 

Experiment-2 
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Fig. II-12.3-4 shows the performance of the three schemes during the inference phase 
in this experiment. For HFL, the inference is performed on the image whose quality is 
the average among the five noisy input images used for INL. Again, it can be observed 
that the benefits in INL over HFL and HSL in terms of both achieved accuracy and 
bandwidth requirements. 

 
II-12.4.  LLM 

In addition to having remarkable capabilities, LLMs are significantly contribute over-
all AI development and even re-shaping our future. However, their multimodality, in 
part, causes some critical challenges in the cloud-based deployment: (i) response time, 
(ii) communication bandwidth cost, and (iii) infringement of data privacy. Therefore, an 
urgent need identified to leverage Mobile Edge Computing (MEC) in order to finetune 
and deploy LLMs on or in closer proximity to data sources, while also preserving data 
ownership for end users. In accordance with the vision of "NET4AI" (network for AI) in 
6G era [15], we envisioned a 6G-MEC architecture that can support LLM deployment at 
the network edge. Our proposed architecture includes the following critical modules. 
 Goal Decomposition: The global inference task is performed collaboratively between 

different layers in the mobile network system. The fusion center decomposes the 
global goal into smaller sub-goals and assigns them to the next-layer BSs based on 
their respective strengths. The BSs then further decompose the sub-goals into 
smaller ones. This process continues until it reaches the edge devices, as in Fig. II-
12.4-1a. 

 Cross-View Attention: The self-attention of transformers can only be computed for 
locally available sensory data. If multiple sensors acquire multi-view data that is 
relevant for a given inference task, it is necessary to compute how a token from a 
given piece of data collected at one sensor attends to another token from another 
piece of data collected or measured at another sensor. We call this as cross-view 
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attention, which is computed at a fusion center in the feature space after feature 
projection on a hyperplane, as in Fig. II-12.4-1b, II-12.4-1c, and II-12.4-1d. 

 Latent Structure-based Knowledge Distillation: It is expected that 6G will evolve 
into with mobile network supporting in-network and distributed AI at the edge [15]. 
However, considering the excessive memory and compute requirements of LLMs, is 
it feasible to run such large models at the 6G edge? Also, would the network 
bandwidth support various agents/devices equipped with LLMs exchanging the 
entirety of their models for model aggregation and collaboration? A step in this 
direction has been studied in [16] recently, where devices use INL to only exchange 
the structure of their extracted features, not the features themselves. This structure 
is then utilized onsite at the device to fine-tune the locally extracted features. 

 

 
II-12.5.  Conclusion 

This paper explained our proposal and analysis on INF for the inference application 
for AI native 6G cellular network. The performance evaluations are also examined 
specifically on INL comparing that in HFL and HLS. It also explained LLM application 
in INL. The full set of original paper on this contribution can be seen in [17].  

 

Fig.II-12.4-1 Main components of LLM-INL 
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Abstract— Advances in wireless communications, such as the 5th-generation mobile 
communication system (5G), have enabled a wide variety of devices to be connected to 
wireless networks. In 6G, all physical entities will be connected to wireless networks and 
their physical space information, such as position and velocity, will be available for new 
mobile services.  NTT’s Innovative Optical and Wireless Network (IOWN) will accelerate 
to obtain the physical-space information from various sensors. Therefore, mobile traffic 
is growing rapidly toward 6G. The use of the millimeter-wave (mmWave) bands is 
promising to increase the capacity of mobile networks. However, the mmWave link 
quality (LQ) is strongly affected by surrounding objects. To stably use mmWave bands, 
an effective solution is to predict future LQ and adaptively control wireless 
communication. This article introduces 5G throughput-prediction technology that is 
based on deep neural networks using physical-space information and an automated 5G 
measurement environment using humanoid robots for deep-learning evaluations. 
 
II-13.1.  Background and Overview 

Advanced wireless communication systems enable a wide variety of devices connect to 
wireless networks. The 5th-generation mobile communication system (5G) contributes 
to creating a wide range of innovative applications, such as virtual and augmented 
reality (VR/AR), as well as services in diverse industries that require high speed, low 
latency and high reliability [1]. In 6G, all elements including people, things, and systems, 
will be connected to wireless networks, and an advanced cyber-physical fusion system 
(CPS) is expected to feedback optimal results to the real world through artificial 
intelligence (AI) [2]. A CPS is a system concept in which AI creates a replica of the real 
world in cyberspace (digital twin) and emulates it beyond the constraints of the real 
world. This concept will provide various values and solutions to social problems. NTT’s 
Innovative Optical and Wireless Network (IOWN) [3] accelerates the CPS concept by 
collecting physical space information from all devices and generating big data; thus, 
mobile traffic is growing rapidly toward 6G. The compound annual growth rate of mobile 
data usage worldwide is reported to 60 % [4].  

In order to accommodate the explosion in mobile traffic, the use of higher frequencies 
such as millimeter-wave (mmWave) is key for future wireless communication systems 
[5]. However, the mmWave bands are characterized by strong direct wave radio 
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propagation, and the mmWave link quality (LQ) is strongly affected by surrounding 
objects. To ensure stable use of the mmWave bands, we introduce wireless LQ prediction 
technology that focuses on the relationship between physical-space information and 
wireless link information. NTT Network Innovation Laboratories is researching using 
physical-space information to promote the evolution to wireless communication systems 
toward IOWN/6G [6]. 
 
II-13.2.  System Model of Wireless LQ Prediction 

Recent study of wireless LQ prediction for mmWave bands showed that physical space 
information such as user equipment (UE) position, camera images and point cloud data, 
are strongly correlated with wireless LQ of mmWave. For example, the received signal-
strength-indicator (RSSI) prediction for 60 GHz using depth images from RGB-D cameras 
in an indoor environment where two pedestrians move between an access point and fixed 
UE has been investigated [7]. However, a more complicated and practical scene where 
both the UE and surrounding objects move has not been considered. Therefore, we 
developed the wireless LQ prediction system for the complicated scene [8]. 

Fig. II-13.2-1 illustrates a wireless LQ prediction system that predicts future wireless 
LQ using physical-space information. The system assumes an environment where 
pedestrians walk around in a wireless cover area of a base station. There are two types of 
pedestrians, one is a UE holder, and the other is a pedestrian for blocking.  The UE holder 
walks while accessing applications such as VR/AR through a base station. The pedestrian 
for blocking has no UE and just walks around the UE holder. The system uses 
cameras/sensors to gather physical space information, which are the position, direction, 
and velocity of all the objects such as the pedestrians. The system also gathers wireless 
LQ information such as data thruput from the UE.  The LQ prediction model is trained 
with the physical space information and the wireless LQ information by using machine 
learning algorithms.  

 

Fig. II-13.2-1. System model of wireless LQ prediction.  
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II-13.3.  Experimental Evaluation of the Wireless LQ Prediction System 

To evaluate the wireless LQ prediction system that we described in the previous 
section, we gathered training data in an indoor environment with 28 GHz 5GNR and 
experimentally evaluated a prediction accuracy of the LQ prediction model [8]. We 
implemented a deep neural network (DNN) for the LQ prediction model and used a 
communication throughput as the LQ. 

For the experimental evaluation, we considered a pedestrian scenario in which two 
people are walking around in an indoor room; one is the UE holder who has a UE which 
communicates via a 5G 28 GHz channel, and the other is the pedestrian for blocking. For 
this scenario, we built autonomous mobility humanoid robots to gather an enough amount 
of training data for the LQ prediction model. The humanoid Robots-A and -B were used 
as substitutions for the UE holder and the pedestrian for blocking,  respectively. Fig. II-
13.3-1 shows an indoor experiment map and the different routes of the two robots. The 
running routes of Robot-A with the UE and Robot-B were the red and green lines, 
respectively, in this figure. Each robot flipped at the ends of the line and continued going 
back and forth between the ends of the line. The maximum robot speed was 1.0 m/s. Robot-
B ran between Robot-A and the base station, resulting in a decrease in throughput due to 
blocking. Each robot consisted of a humanoid mannequin mounted on a mobility robot. 
Robot-A, which held the UE in a backpack is shown in Fig. II-13.3-2. Robot-B for blocking 
is shown in Fig. II-13.3-3. Robots-A and -B were 1.67 and 1.70 m tall, respectively. The 
antenna height of the base station is 2.65 m. These robots were controlled by a robot 
operating system (ROS) [9]. The robots’ position, velocity, and direction were obtained 
from the ROS as physical space information. The robots had LiDAR (light detection and 
ranging) censors which can collect point clouds of laser signal reflection points. The point 
clouds were used to calculate the location and direction of the robots.  
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Fig. II-13.3-1. The locations of UE and 5G base station are shown on a map of the 
indoor experimental environment. The running courses of Robot-A and -B are red and 

green lines, respectively. Each robot flips at the end of the line. 
 

 
Fig. II-13.3-2. Robot-A with UE 

communicates through the 5G base 
station. 

 
Fig. II-13.3-3. Robot-B for blocking runs 
between Robot-A and the 5G base station. 

 
We used the Iperf [10] software tool to measure the throughput of the UE. In this 

experiment, we focused on an uplink communication, so we made the UE transmit 
packets via the Iperf to the server which was set on the multi access edge computing 
(MEC). 

The throughput of the UE and the states of the Robots-A and -B were measured every 
100 ms. The resulting dataset contained 1,493,750 samples corresponding to about 41 
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hours spread over 11 days. These values were normalized to yield a distribution from 0 
to 1 or -1 to 1. We used 20 % sampling data as test data. The remaining 80 % was used 
as training data (90 %), and as a validation data (10 %). Since we focus on LQ prediction 
for detecting the performance drops due to shielding, the upper limit of the measured 
throughput was set to 200 Mbps. Therefore, our prediction scheme predicts the future 
throughput with ceiling of 200 Mbps. For the LQ prediction model, we used a DNN which 
has three hidden layers: one long short-term memory layer and two fully connected 
layers spaced with 10% dropout. The activation function for the hidden layers is the 
rectified linear unit. The DNN is trained to minimize the loss function of the mean 
squared error. The optimization algorithm is Adam with a learning rate of 0.0005. The 
output value of the DNN is one-second-ahead throughput. To evaluate the differences in 
prediction accuracy of the DNN due to the input features of training data, we prepared 
four input features: one is the past one-second throughput (ΦT), one is the past one-
second states of the Robot-A (ΦA), one is the past one-second states of the Robots-A and 
-B (ΦAB) and one is the past one-second throughput and states of the Robots-A and -B 
(ΦABT). 

Fig. II-13.3-4 shows time sequential plots of one-second-ahead throughput prediction 
values and measured throughput values. There were two main factors affecting 
throughput degradation in our scenario. The first was line-of-sight (LOS) blockage by 
Robot-B moving between Robot-A and the base station at around 26 and 58 seconds, as 
shown in Fig. II-13.3-4. The observed throughput dropped to about 100 Mbps due to the 
blocking effect of the robot body in our environment. This occurred at various locations 
along Robot-A’s route, and blocking time changed due to the speed and relative directions 
of Robots-A and B. The second factor was self-blocking by Robot-A, which made a 180 

Fig. II-13.3-4. Time sequential plots of measured and predicted 
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degree turn at each endpoint goal at around 9 and 37 seconds, as shown in Fig. II-13.3-
4. The self-blocking by Robot-A had greater impact on throughput than the LOS blockage 
by Robot-B as the throughput rapidly dropped below 50 Mbps. This is because Robot-A 
as the obstacle (self-blocking) was closer to the UE than Robot-B, and the 180-degree 
turn took longer to complete than the blockage by Robot-B.  

Fig. II-13.3-5 shows the cumulative distribution function (CDF) of the absolute error 
between the predicted throughput values and measured throughput values. The 
effectiveness of physical-space information became more prominent as the CDF value 
fell. The 50th-percentile absolute error value improved by 57.5% using ΦABT, compared 
with using ΦT, which takes past throughput as the input feature. This result indicates 
the correlation between the physical-space information and throughput. Additionally, 
the 70th-percentile absolute error value was less than 20 Mbps for all input features, 
indicating that the absolute errors were concentrated within 20 Mbps and correlations 
were observed between all input features and throughput. Similarly, at the 50th-
percentile absolute error value, compared with ΦA and ΦAB, an improvement of 35% was 
attained by adding the state of Robot-B. This confirms the effectiveness of the states of 
surrounding objects, such as Robot-B, in throughput prediction. Fig. II-13.3-5 also shows 
that large prediction errors exceeding 50 Mbps occurred. This is because the current 
input features of past throughput and physical-space information cannot explain the 5G 
network-driven throughput changes such as link interruption and reconnection. For 
future work, we plan to consider such throughput changes by adding the 5G network 
information.   

 
Fig. II-13.3-5. CDF of the absolute error between the predicted 
throughput for each input feature and measured throughput. 
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II-13.4.  Conclusion 

This article presented a throughput-prediction technology for 5G services over a 28-
GHz channel that uses physical-space information for a two-pedestrian scenario in which 
both a UE holder and a pedestrian move continuously. To evaluate our throughput-
prediction model and collect the learning data required for training the DNN, we 
developed an actual indoor experimental setup where 5G throughput and physical-space 
information are automatically measured using autonomous humanoid robots. The 
throughputs, including the sharp drops due to self-blocking by UE rotation and the 
blocking by an object moving in front of the UE, were captured. We showed that our 
model was effective in using surrounding object information as well as UE information 
for predicting 5G throughput one second ahead. Our model with physical-space 
information improved prediction accuracy by 57.5% at the 50th-percentile absolute error 
value compared with a prediction model that uses only the past throughput as the input 
feature. We will continue this research to develop core technologies toward 6G/IOWN.  

For the further details of this article, please refer [11]. 
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Abstract— Recently, advancement of AI/ML has been remarkable, and many applied 
research studies are attracting attention now. This is also true in the field of radio 
propagation. This paper introduces its application to radio propagation prediction, which 
is currently under intensive study. 
 
II-14.1.  Introduction 

In recent years, artificial intelligence (AI) / machine learning (ML) has made 
remarkable progress, and many applied research studies have been reported. Here, they 
are mainly based on deep learning. The deep learning is one of the methods of ML for 
neural networks with many layers (or DNN: deep neural network). Deep learning has 
succeeded the dramatic performance improvement of image recognition, natural 
language processing etc., while utilizing of abundant computer resources and big data. 
The main reason for its success is that the deep learning can automatically extract 
features of contents. 

In mobile communications, accurate prediction of radio propagation characteristics is 
needed for optimum cell design, various prediction models have been proposed so far [1]. 
These are categorized into two types. One is physical-based model which is based on 
electromagnetic theory, and another is statistical (or data-driven) model which is based 
on measurement data. Here, ray tracing (RT) is one of the physical-based models and 
has become popular tool for radio propagation analysis in recent years. In RT, various 
propagation characteristics such as loss, time of arrival, angle of arrival and so on can 
be predicted by tracing rays between transmitter (Tx) to receiver (Rx) while taking 
interaction (reflection, diffraction, transmission) into account. However, increasing the 
number of interactions considered to improve the prediction accuracy increases the 
computation time. So, when the target characteristic is only propagation loss, the 
statistical model, e.g. Okumura-Hata model [2] is preferred.  

In statistical modeling, multi-regression analysis has been applied to model the data 
[3]. The multi-regression analysis is a very powerful tool, but it is needed to manually 
determine input parameters (especially environmental parameters related to building, 
street, etc.) and functional form beforehand. This is very difficult because there are a lot 
of candidates. So, the prediction models with neural network (NN) have been proposed 
in [4], [5]. By using these models, functional form is automatically generated, and it is 
reported that prediction accuracy for propagation loss is improved. However, the models 
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are based on conventional fully connected neural network (FNN), optimal input 
parameters must be investigated, manually.  

As mentioned above, the deep learning can automatically extract features of contents. 
Especially, deep convolutional neural network (DCNN) are very useful to extract 
features from image. This means that optimal parameters for propagation loss prediction 
can be automatically obtained from map data with information such as building spatial 
distribution. So, DCNN-based model has been proposed for propagation loss prediction 
[6] and is currently being vigorously studied [7]-[12]. This paper presents our latest 
results in [12]. 
 
II-14.2.  DCNN-based Radio Propagation Prediction Model 
II-14.2.1.  DCNN Configuration 

DCNN of our proposed model is constructed by two parts: feature extraction part and 
prediction part, as show in Fig. II-14.2.1-1.  

The feature extraction part is for extraction of features of contents as key parameters 
for propagation loss prediction, and it is constructed by DCNN which has 13 
convolutional layers: Conv_1 – Conv_13, and five max. pooling layers: Pool_1 – Pool_5. 
First, three maps (the size of each map: 256-by-256) are input. In Conv_1&2 layers, 
convolutional processing with 32 filters (the size of each filter: 3-by-3) is done and then 
the 32 maps (the size of each map: 256-by-256) are obtained. In next Pool_1 layer, max. 
pooling processing is done for 32 maps. Here, pooling size is 2-by-2, so the size of output 
map is reduced to 128-by-128. After the similar convolutional and pooling processing are 
repeated, 256 maps (the size of each map: 8-by-8) are output from Pool_5 layer. Here, 
the number of samples is 16384 (=8×8×256) and these are input to Dense_1 layer after 
conversion process to 1 D data in Flatten_1. The prediction part is constructed by FNN 
with two fully connected layers: Dense_1 and Dense_2. After the processing in 
Dense_1&2, propagation loss is predicted as output. Note that activation function is 
defined as: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥  in Dense_2 layer; otherwise, Rectified Linear Unit function, i.e. 
𝑓𝑓(𝑥𝑥) = max(0,𝑥𝑥). 

 
Fig. II-14.2.1-1 DCNN configuration 
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II-14.2.2.  Input Map Data 
In our model, the spatial information of rectangular area centered on mobile station 

(MS) position is input to DCNN as map data. The size of rectangular is 256 m -by- 256 
m, and the area is sampled with 1 m mesh, so, the sample size is 256-by-256. In addition, 
the rectangular is defined so that the base station (BS) always exist in a certain direction. 
Specifically, as shown in Fig. II-14.2.2-1, the rectangular region is defined so that BS is 
oriented positively on the xm axis in the local coordinates of the map with MS as the 
origin. By this definition, the spatial information about “BS direction” are indirectly 
considered for DCNN learning, even if the BS position are not directly input to the 
DCNN as parameter. 

 

Fig. II-14.2.2-1. Definition of rectangular region 
 
Input maps are three as follows. 

 BS distance map: Map with distance from BS to each mesh as an element. 
 MS distance map: Map with distance from MS to each mesh as an element. 
 Building map: Map with building height information in each mesh. 
In the building map, the height is normalized by the height of Fresnel-zone center when 
assuming one time scattering. This advantage is that BS antenna height and MS 
antenna height are indirectly considered as input parameters. Figure II-14.2.2-2 shows 
the examples of input map data. 
 

     
(a) BS distance map         (b) MS distance map        (c) Building map 

Fig. II-14.2.2-1. Examples of input map data 
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II-14.3.  Performance of DCNN-based Model 
II-14.3.1.  Measurement Data 

Propagation loss data measured in Kokura area are used for performance evaluation. 
Here, the data can be obtained for free from AP propagation database [13]. Figure II-
14.3.1-1 and Table II-14.3.1-1 show the measurement area and conditions, respectively. 

 

 
Fig. II-14.3.1-1 Measurement area (Kyushu Kokura area, Japan): White lines 

represent measurement courses. 
 

Table II-14.3.1-1 Measurement conditions 

 
 
In this paper, the data of 5 courses (#6, #19, #24, #27, #32) are used for validation, the 

remaining data of 29 courses are for DCNN training. Here, data of course #5 is not used 
because sufficient input map data could be obtained. The total number of samples (or 
MS points) is 81 for validation and 713 for training. 
 
II-14.3.2.  Evaluation Results 

Figure II-14.3.2-1 shows the prediction results for validation data. Horizontal axis 
represents distance from BS and vertical axis represents propagation loss. We find that 
measurement and prediction are agree well. Here, RMS error is 3.23 dB. 
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Fig. II-14.3.2-1 Prediction results. 

 
The extracted features after training DCNN can be visualized by using Grad-CAM 

(Gradient-weighted Class Activation Mapping) [14], which one of XAI (Explainable AI) 
algorithms. Therefore, Grad-CAM were performed for three points as shown in Fig. II-
14.3.2-2. Figure II-14.3.2-3 shows the analysis results with Grad-CAM. In Fig. II-14.3.2-
3, the larger the gradient value, the higher the contribution for the propagation loss 
prediction. From the results, DCNN-based model is thought to use the "distribution of 
low-rise buildings and spaces without buildings" in the vicinity of MS as the basis for 
determining the propagation loss prediction. 

 

 
(a) Positional relationship with BS 

A             B             C 

   

(b) Maps in local coordinate system 
Fig. II-14.3.2-1 Reception points for evaluation of extracted features from map data. 
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(a) Point A          (b) Point B           (c) Point C  

Fig. II-14.3.2-2 Analysis results with Grad-CAM when using multiple maps. 
 

Finally, Fig. II-14.3.2-3 shows propagation loss distribution predicted by trained 
DCNN when BS are installed in different location. Note that the other propagation 
conditions are same as that in table II-14.3.1-1. From this figure, we can see that even if 
the distance from the BS is the same, the propagation loss increases in areas with dense 
buildings. 

 

 
Fig. II-14.3.2-3 Propagation loss distribution predicted by trained DCNN. 

 
II-14.4.  Conclusion 

In this paper, we introduced DCNN-based model for radio propagation loss prediction. 
This model predicts the propagation loss from map data with information such as 
building spatial distribution and its prediction accuracy is higher than conventional 
model based on multi-regression analysis. In our study, RMS error of about 3 dB is 
obtained. Also, we showed that the basis for determining the prediction in the DCNN-
based model can be confirmed by Grad-CAM. 
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II-15.  AI-Based Radio Propagation Modeling for Wireless Emulator 

Tatsuya Nagao, Takahiro Hayashi 
KDDI Research, Inc. 

 
Abstract— To efficiently design and validate wireless communication systems, 

including Beyond 5G, research and development of wireless emulators that replicate the 
behavior of wireless communications in a virtual environment is progressing. Precise 
emulation requires accurate models of radio propagation characteristics in real 
environments. We introduce recent advancements in site-specific radio propagation 
modeling techniques utilizing machine learning. 
 
II-15.1.  Introduction 

In the design of wireless communication systems, the verification and performance 
evaluation of systems based on real-world use cases are critical processes. However, 
conducting field tests using actual wireless devices in real environments requires 
substantial resources and poses challenges in ensuring reproducibility. Consequently, 
research and development efforts are advancing toward wireless emulators replicating 
communication environments in a virtual space, thereby simulating the behavior of 
wireless communication systems [1]. These wireless emulators aim to construct a digital 
twin of wireless communication by enabling wireless communication systems, composed 
of virtual devices built in a virtual space and those connected via physical interfaces, to 
operate in real-time to simulate the system’s dynamic characteristics. 

When evaluating and validating wireless communication systems using wireless 
emulators, it is desirable that the radio propagation characteristics in the expected usage 
environment can also be reproduced in the virtual space. Traditional radio propagation 
models are typically constructed based on statistical processing of simple environmental 
parameters, such as the distance between Tx and Rx and measured data. However, as 
actual propagation characteristics can vary significantly due to surrounding 
environments, the accuracy of site-specific propagation characteristics proves 
insufficient for precise emulation of wireless communication.  

To address this, various methods utilizing machine learning to establish models that 
consider site-specific environmental information are being investigated. By implicitly 
learning the relationships between environmental data and measured data, models 
tailored to individual locations can be constructed. Additionally, the application of 
artificial intelligence (AI) techniques, such as image recognition, facilitates the 
extraction of features from multidimensional data like environmental spatial 
information, thereby enabling complex pattern recognition. 
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II-15.2.  Path Loss Model Based on Residual Networks (ResNet) 

This section describes the proposed method for modeling path loss [2]. As illustrated 
in Fig. II-15.2-1, the method utilizes three types of map data as input: (a) relative 
building height surrounding the Tx, (b) relative building height surrounding the Rx, and 
(c) the distance between the Tx and Rx. Here, relative building height refers to the height 
of a building relative to the height of the antenna, serving as an indicator of line-of-sight 
from the antenna. The extraction of map data is conducted to ensure that the directions 
from the Tx point to the Rx point, and vice versa, are aligned. 

Furthermore, as shown in Fig. II-15.2-2, we have designed an architecture suitable for 
path loss prediction based on Residual Networks (ResNet), which are widely used in 
image recognition tasks. ResNet incorporates shortcut connections between several 
convolutional layers, allowing for efficient propagation of error information from the 
output layer back to the higher layers—specifically, to those layers closer to the input—
during the training process. This structural characteristic enhances the model's ability 
to learn complex representations and improves the accuracy of path loss predictions in 
the presence of varying environmental factors.  

 

 
Fig. II-15.2-1. Examples of Input Data 
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Fig. II-15.2-2. Path Loss Model Based on Residual Networks 

 
II-15.3.  Evaluation Results 

The accuracy of path loss prediction using the proposed method was evaluated based 
on measured data obtained from an urban area in Yokohama City. A Tx was set up on 
the rooftop of a building approximately thirty-one meters high, where measurements 
were conducted across four frequency bands: 922 MHz, 2462 MHz, 4850 MHz, and 28.35 
GHz [3]. K-folding Cross-validation (K=5) was employed for the assessment of the 
proposed method. Specifically, 80% of the dataset was used for training, while the 
remaining 20% was reserved for evaluation, with this process repeated five times. A 
comparative evaluation was also conducted against the widely recognized statistical 
model, the 3GPP TR 38.901 Urban Macro (UMa) model [4]. The evaluation results are 
presented in Table. II-15.3-1 and Fig. II-15.3-1. As seen from the table, the proposed 
method significantly improves prediction accuracy compared to the UMa model. 
Furthermore, the predicted values from the proposed method closely correspond to the 
measured values, as illustrated in the figures. 

 
Table. II-15.3-1. Evaluation Results 

Frequency RMSE [dB] 
3GPP Urban 
Macro (UMa) 

ResNet 
(proposed) 

922 MHz 8.8 3.8 
2462 MHz 7.4 4.3 
4850 MHz 8.2 2.7 
28.35 GHz 17.6 3.5 
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(a) 922 MHz (b) 2462 MHz 

  
(c) 4850 MHz (d) 28.35 GHz 

Fig. II-15.3-1. Scatter Plot 
(x: Measured Path Loss, y: Predicted Path Loss) 

 
II-15.4.  Conclusion 

This article introduces methodologies for applying AI technologies to radio propagation 
modeling, a critical component for realizing wireless emulators as digital twins of 
wireless communication systems. By utilizing site-specific environmental information 
through machine learning, we have demonstrated the ability to simulate site-specific 
radio propagation characteristics accurately. The findings of this study are expected to 
contribute to the efficient design and optimization of future wireless communication 
systems, representing a significant step forward in the evolution of wireless 
communication technology. 
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II-16.  6G Simulator Utilizing Future Prediction Control Technology Based on AI/ML 

Yuyuan Chang, Yuta Hayashi, Kiichi Tateishi, Satoshi Suyama, and Huiling Jiang 
 NTT DOCOMO, INC. 

 
II-16.1.  Introduction 

In 6G, to achieve communication speeds exceeding 100 Gbps, the utilization of 
frequency bands called sub-terahertz bands, such as 100 GHz, which can use greater 
bandwidths, is being considered compared to 5G [1]. Additionally, discussions are 
beginning on the use of frequency bands known as mid-bands, ranging from 7 GHz to 24 
GHz. Similar to 5G, it is anticipated that communication systems will be constructed by 
combining two types of frequency bands. To realize ultra-low latency communication, 
high connectivity, and coverage assurance, a distributed network enhancement 
technology (NRNT: New Radio Network Topology) is being proposed [2], which will 
establish a distributed network topology in the spatial domain. For example, new 
network forms such as reconfigurable intelligent surfaces (RIS) that can control 
reflection directions and intensities, and moving base stations (BS) like base station 
drones are being envisioned. 
 In addition to the advancement of conventional wireless communication technologies, 
the utilization of AI (Artificial Intelligence) is also being considered. In the 6G era, it is 
anticipated that vast and diverse information such as images, audio, and video will be 
transmitted from various devices, and AI technology is expected to be used to analyze 
and leverage this extensive and varied information. Furthermore, the introduction of AI 
technology into wireless communication systems is being contemplated, with the 
expectation that it will provide higher quality communication by implementing various 
controls in wireless communication, managing networks and devices, and automating 
optimization functions for use cases and environments. Particularly in the fusion of 
cyber-physical spaces, video and various sensing information will be transmitted to the 
network through IoT (Internet of Things) devices. Based on the transmitted information, 
calculations can be performed in cyber space to predict a few seconds ahead, and the 
predicted information can be utilized in the physical space for precise communication, 
such as base station selection and beam selection. 
 The authors have developed a 6G system-level simulator (6G simulator) designed to 
evaluate and visualize the technologies being considered for 6G as a whole system [3]-
[5]. Figure II-16.1-1 illustrates the worldview of the 6G simulator. So far, the sub-
terahertz band, mid-band, and NRNT have been integrated into the 6G simulator, and 
evaluations have been conducted in a virtual outdoor urban environment. Additionally, 
machine learning (ML) algorithms from AI technology have been incorporated into the 
6G simulator, enabling predictive control to avoid the impact of unexpected obstacles 
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based on pre-learned results, demonstrating the use cases of AI technology in wireless 
communication systems [6]. This work investigates the effects of using AI-ML under 
various conditions on system performance, thereby clarifying the effectiveness of 
wireless communication systems utilizing AI technology. Simulations will also be 
conducted under various conditions, such as changes in the TRP (Transmission and 
Reception Point) selection cycle and the mobility speed of user equipment (UE), to 
confirm how the effects of AI-ML manifest and to consider effective use cases for AI-ML 
[6], [7].  
 
II-16.2.  Future Prediction Control Using AI-ML Technology 

In 5G and 6G, high-frequency bands are used, which have strong directivity and high 
propagation loss, however, enabling high-speed, large-capacity communication and low-
latency communication. Therefore, it is important to create environments that are as 
close and unobstructed as possible, and the use of RIS and BS drones to intentionally 
establish communication pathways is being considered. However, since the 
communication environment is constantly changing, there is a high possibility of 
throughput degradation due to the emergence of unexpected obstacles. Hence, it is 
conceivable to use future prediction control technology to avoid the impact of obstructions 
and prevent throughput degradation. 

With the extreme-high-speed, extreme-large-capacity, and extreme-low latency 
communication features of 6G, the realization of autonomous driving for vehicles 
utilizing cellular networks is anticipated in the 6G era. In this work, we consider a 
situation where an autonomous vehicle, as shown in Figure II-16.2-1, is driving in an 
outdoor urban area, and the communication between the autonomous vehicle and the 
TRP located along the road involves the occurrence of obstructions. At that time, future 

Figure II-16.1-1   The worldview of the 6G simulator.  
 



 
 
 

 144 

prediction control using AI-ML will be implemented to prevent throughput degradation 
and ensure that a high throughput is consistently maintained. 

The real communication environment is constantly changing, influenced by various 
factors such as time of day, weather, population density in the area, and the presence or 
absence of obstructions. Therefore, in this simulation, deep reinforcement learning is 
employed for TRP selection. Deep reinforcement learning is a technology that combines 
deep learning and reinforcement learning, enhancing decision-making capabilities in 
more complex environments by integrating the two approaches.   

To implement deep reinforcement learning, it is necessary to define the environment, 
state, action, and reward. In this simulation, the environment is defined as 
“communication between the TRP on a straight road and the autonomous vehicle,” and 
the state is defined as “the UE’s location information and the presence of a bus that acts 
as an obstruction.” The UE’s location information is represented by dividing the AI-ML 
application area into a grid pattern, as shown in Figure II-16.2-1, using the grid numbers. 
Additionally, the length of one side of the grid is defined as “GridSpace.” The action is 
defined as “the TRP selection process,” and the reward is defined as “the cumulative 
value of received power within the TRP selection cycle.” Furthermore, the ε-greedy policy 
is employed as the action policy. The ε-greedy policy allows for a balanced combination 
of “exploration,” where actions are selected randomly by varying ε, and “exploitation,” 
where actions are chosen based on rewards obtained from previous explorations, 
resulting in an action policy that is more suitable for the environment [7].  

 
Figure II-16.2-1   The environment 

(The image of the grid is shown by red lines) 
 

 
Figure II-16.2-2    An example of updating the neural network. 

(Updating by every 4 slots) 
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For constructing the neural network, Adam (Adaptive Moment Estimation) [8] is used. 
The results obtained from the ε-greedy policy are utilized to update the neural network. 
The update timing is aligned with the TRP selection cycle. Figure II-16.2-2 illustrates 
an example of updating the neural network. For example, let’s assume the TRP selection 
cycle occurs every 4 slots. If the current time is slot 8, the UE’s location and the presence 
of a bus at slot 4, as well as which TRP was selected, will be learned based on the received 
power obtained from the connected TRP up to slot 8. By performing this process for each 
TRP selection cycle, it becomes possible to select the TRP that yields the highest received 
power within the selection cycle, taking into account the presence or absence of 
obstructions.  
 
II-16.3.  Simulation Using a 6G Simulator 

Table II-16.3-1 shows the learning parameters for AI-ML, and Table II-16.3-2 presents 
the simulation parameters. The flow of the simulation begins with the generation of the 
learning model. During this process, the parameter values indicated in Table II-16.3-1 
are used for training. Subsequently, the generated learning model is employed for 
predictive control. In this simulation, the frequency range of 15 GHz in the mid-band is 
utilized. Each TRP consists of nine antennas, while the UE is configured with nine 4×4 
subarrays. Each UE forms beams through hybrid beamforming. The UE selects the TRP 
and beams that provides the highest received power and connects to the TRP with that 

Table II-16.3-1   AI-ML learning parameters 

 
 

Table II-16.3-2   simulation parameters  
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beam. Furthermore, the number of TRPs installed is set to nine, and one UE is chosen 
for evaluation. In this simulation, data is transmitted using time division duplex (TDD) 
with a downlink to uplink ratio of 10:0. Therefore, this report focuses on evaluating the 
downlink throughput. The blockage caused by a bus utilizes a model based on TR38.901’s 
Blockage model B [9]. This model arranges flat obstructions and applies attenuation 
based on the difference between the straight-line distance between the transmission and 
reception points and the distance via the top, bottom, left, and right edges of the 
obstruction. In this report, the movement speed of UE is categorized into three types: 30 
km/h, 60 km/h, and 120 km/h. In the 6G simulator, at 30 km/h, this corresponds to 
moving 1 meter per slot; at 60 km/h, it corresponds to 2 meters, and at 120 km/h, it 
corresponds to 4 meters. 
 
II-16.3.1.  Effects of AI-ML under Different TRP Selection Cycles 

Figures II-16.3.1-1 to II-16.3.1-3 show the variation in throughput when the mobile 
station (MS) moves at a speed of 60 km/h, with a GridSpace of 20 m, and TRP selection 
cycles of 10, 20, and 40 ms. The shaded areas in the figures indicate the timing of bus 
stops. The solid lines represent the characteristics when AI-ML is applied, while the 
dashed lines indicate the  

 
Figure II-16.3.1-1   variation in throughput 

(selection cycle: 10 ms) 

 Figure II-16.3.1-2   variation in throughput 
(selection cycle: 20 ms) 
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characteristics without the application of AI-ML. Focusing on the shaded areas, it can 
be seen that in all patterns, the use of AI-ML helps prevent a decline in throughput. 
Moreover, as the TRP cycle increases, the throughput tends to improve regardless of the 
presence or absence of obstructions, and the effect of AI-ML becomes more pronounced. 
When the TRP selection cycle is long, the connection remains with a single TRP, allowing 
for the selection of one with high received power during the connection moment. However, 
considering the overall received power, it is more likely to be lower. Conversely, by using 
AI-ML, it becomes possible to select a TRP that will increase the received power from 
the current selection to the next, which suggests, as shown in Figures II-16.3.1-2 and II-
16.3.1-3, that the effects of AI-ML manifest strongly even when obstructions do not 
appear. When the TRP selection cycle is short, the throughput characteristics do not 
change regardless of the application of AI-ML when there are no obstructions. This is 
because, with a short TRP selection cycle, it is possible to continuously select TRPs with 
high received power, resulting in good throughput characteristics without the need to 
consider maximizing received power within the selection cycle. However, considering 
real-world communication systems, processing delays may occur, making rapid selection 
difficult. Therefore, it is expected that in realistic environments, the characteristics will 
resemble those with a longer TRP selection cycle as shown in Figures II-16.3.1-2 and II-
16.3.1-3, making the introduction of AI-ML effective. It should be noted that there are 
moments when throughput significantly deteriorates regardless of whether AI-ML is 
applied; this is due to processing in the simulator. As a result, similar downturns will 
occur in subsequent results. 
 

 Figure II-16.3.1-3   variation in throughput 
(selection cycle: 40 ms) 
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II-16.3.2.  Effects of AI-ML at Different UE Speeds 

Figures II-16.3.2-1 and II-16.3.2-2 show the results when the GridSpace is set to 20 m, 
the TRP selection cycle is 10 ms, and the speed of UE varies between 30 km/h and 120 
km/h. The differing number of shaded areas in the figures (indicating the occurrence of 
obstructions) corresponds to the change in the speed of the bus that cause the 
obstructions, which is adjusted according to the UE’s speed, resulting in variations in 
the number of times the bus travels along the measured road during the simulation time. 
Upon examining the throughput characteristics, when the UE’s speed is 30 km/h, the 
use of AI-ML allows for the avoidance of obstruction effects, leading to improvements in 
throughput. In contrast, at 120 km/h, the effect of AI-ML is minimal. The throughput 
characteristics without the application of AI-ML do not deteriorate even when 
obstructions occur, suggesting that in this simulation, the configurations for the TRP 
selection cycle and TRP placement ensure that TRPs on the obstruction side are not 
selected even without AI-ML. Consequently, since the selected TRP remains unchanged 
with the application of AI-ML, there is no change in the throughput characteristics at 
the moments when obstructions occur. Figure II-16.3.2-2 presents the throughput 

  
Figure II-16.3.2-1   variation in throughput 

(speed: 30 km/h) 
 

  
Figure II-16.3.2-2   variation in throughput 
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characteristics when the UE's speed is 120 km/h and the TRP selection cycle is set to 20 
ms. The lengthened TRP selection cycle resulted in significant differences in 
characteristics depending on the application of AI-ML compared to the results shown in 
Figure II-16.3.2-2. By observing the occurrence of obstructions, it can be seen that the 
change in the TRP selection cycle has made the system susceptible to obstruction effects 
even at 120 km/h. Additionally, the use of AI-ML effectively mitigates the throughput 
degradation caused by these obstructions. As mentioned in the previous section, when 
the TRP selection cycle increases, even if the received power is high at the moment of 
selection, the overall received power within the cycle is likely to be low. Moreover, with 
higher speeds, the UE travels longer distance before the next TRP selection, significantly 
increasing the distance between the TRP and the UE. Thus, by selecting TRPs to 
maximize received power within the cycle via AI-ML, differences in throughput are 
observed depending on whether AI-ML is applied, as illustrated in Figure II-16.3.2-3.  
 
II-16.4.  Conclusions 

In the simulations, AI-ML was implemented for communication between a single 
autonomous vehicle and a TRP installed along a straight road in an outdoor urban 
environment. By maximizing the received power within the selection cycle, it is possible 
to prevent throughput degradation caused by obstruction effects; thus, using AI-ML for 
predictive control in communications between vehicles and TRPs can be considered 
effective. Additionally, even when there are no obstructions, the impact of maximizing 
received power within the selection cycle is evident, and throughput significantly 
improved in environments where UE cannot consecutively select TRPs. This indicates 
that AI-ML can serve as a means to mitigate throughput degradation caused by 
processing delays or other system performance issues encountered during connections 
with TRPs. However, it should be noted that this simulation considers only one UE, and 
does not account for interference from other UEs. Furthermore, since the road is straight 

 
 Figure II-16.3.2-3   variation in throughput 

(speed: 120 km/h, selection cycle: 20 ms) 
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and the UE's movement path follows a single pattern, the environment is relatively easy 
to learn. When evaluating under real-world conditions, it is necessary to consider 
scenarios with an increased number of UEs or irregular movement of UEs. As a future 
prospect, we are considering the exploration of additional use cases for AI technology by 
examining new scenarios and adding learning parameters.  
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II-17.1.  Introduction 

In the advanced Cyber-Physical Systems (CPS) anticipated for the 2030s, artificial 
intelligence (AI) will recreate the real world in cyberspace through digital twins, allowing 
predictions of the future and new knowledge gained through emulation to be fed back 
into the real world, thereby providing various values and solutions. In this advanced 
CPS, to achieve high-capacity and low-latency transmission of sensing information from 
the real world to cyberspace, as well as reliable and low-latency control signal 
transmission from cyberspace to the real world, research and development of the 6G is 
being vigorously pursued [1]-[4]. In 6G, the peak data rate is set to exceed 100 Gbps, the 
area coverage rate providing Gbps-level services is 100%, the end-to-end (E2E) latency 
is less than 1 ms, the connection for an ultra-high number of devices is targeted at 10 
million devices/km², and extremely stringent conditions such as ultra-low power 
consumption and low cost are established. Furthermore, 6G is expected to utilize AI 
technologies in every domain of the system, while wireless sensing technologies that 
leverage communication signal for sensing applications will enable high-precision 
terminal positioning with errors of less than a centimeter and surrounding object 
detection. For maximizing the performance of this 6G system, ensuring quality, and 
efficient system operations, dynamic control through CPS is expected to be introduced 
[5], [6]. 

Figure II-17.1-1 shows a 6G system utilizing dynamic control through CPS [6]. Here, 
the focus is primarily on the wireless portion of the 6G system. In the real space, there 
exists the actual 6G system, within which numerous wireless devices (base stations, 
relays, terminals, etc.) are connected to the wireless network. On the other hand, the 
virtual space contains propagation emulators, transmission emulators, and dynamic 
control. In the operational flow, first, at a certain point in time, a large volume of sensing 
information from the actual 6G system is sent in real-time to the virtual space. Based on 
this information, models of the usage environment and the wireless devices are 
constructed in the virtual space. Next, the propagation characteristics of each wireless 

 
Figure II-17.1-1    a 6G system utilizing dynamic control through CPS. 
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link are estimated in succession through the propagation emulator and the transmission 
emulator, and the performance (throughput, interference level, power consumption, etc.) 
of each wireless device is evaluated based on the propagation characteristics. 
Furthermore, dynamic control optimizes the target performance in the virtual space. 
Using AI, it extracts information about the adjustment parameters and feeds this back 
to the propagation emulator and the transmission emulator. By repeatedly cycling 
through the propagation emulator, transmission emulator, and dynamic control, 
optimization can be achieved in the virtual space. Finally, as control signals necessary 
for the control of the actual 6G system, these are fed back to the real space and reflected 
in the actual 6G system. By enabling real-time cycles of high-capacity information 
exchange between the real space and the virtual space, it is believed that the maximum 
performance and efficient operation of the 6G system can be realized [7]. 
 On the other hand, when utilizing high-frequency bands such as the sub-terahertz 
band in the system, it is necessary to not only validate individual technologies but also 
to conduct an early assessment of system performance when deploying multiple base 
stations (BS) and mobile stations (MS). This will clarify the performance improvement 
effects of the system as a whole and identify potential issues. However, device 
development generally requires significant time and cost, and it is necessary to ensure 
flexibility in changing configurations and parameters. Therefore, the authors aimed to 
demonstrate the feasibility of achieving ultra-high-speed communication through the 
utilization of the sub-terahertz band by developing a 6G system-level simulator 
(hereinafter referred to as the 6G simulator) and advancing its performance verification 
[8]. 
 The conventional 6G simulator has the capability to evaluate the throughput when 
utilizing the 100 GHz band in two types of indoor environments, simulated as a shopping 
mall and a factory, confirming that throughput exceeding 100 Gbps can be achieved in 
both scenarios. When considering the introduction of 5G and 6G communication systems 
in specific environments such as indoors or factories, it is essential to understand the 
system performance, such as throughput, in advance for the intended environment. 
Moreover, visualizing the system performance provides very beneficial information for 
exploring methods of implementing communication systems. However, the conventional 
6G simulator could only evaluate throughput in the pre-prepared scenarios and 
environments mentioned above. To accurately calculate throughput, high-precision 
estimation of radio wave propagation characteristics in the intended communication 
system environment is necessary. Recently, ray tracing calculations using polygon 
models of structures generated from point cloud data acquired in assessment 
environments have gained attention as methods to estimate propagation characteristics 
with high precision [9]-[12]. Therefore, the authors developed an enhanced 6G simulator 
capable of evaluating and visualizing the throughput of 5G and 6G based on the 
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propagation characteristics obtained from ray tracing calculations using real 
environment models derived from point cloud data for the purpose of evaluating system 
performance in real environments [13]. This report introduces an overview of the 
functions of this simulator and examples of its performance evaluation [14], [15]. 
 
II-17.2.  Overview of a 6G Simulator Using Real Environment Models Based on Point 

Cloud Data 

This simulator is based on the 6G simulator reported in [8]. Below, we describe the 
overview of the conventional 6G simulator and this simulator. The conventional 6G 
simulator was developed to quantitatively validate the requirements and technical 
concepts of 6G as described in the NTT Docomo 6G white paper [1], as well as to verify 
the potential of utilizing the sub-terahertz band as a system [8]. In this simulator, we 
also aimed to apply the sub-terahertz band to achieve extreme-high data rate 
communication exceeding 100 Gbps more reliably, under the constraint of maintaining 
BS antenna sizes comparable to those of sub-6 and millimeter waves, and transmission 
power equivalent to that of 5G. By utilizing the sub-terahertz band, it is possible to 
significantly increase the number of antenna elements (hereinafter referred to as 
“elements”) in Massive MIMO antennas, which in turn provides high beamforming (BF) 
gain that can compensate for the considerable propagation losses associated with the 
sub-terahertz band. 

In the conventional 6G simulator, a channel model standardized by 3GPP was used 
for the simulation of the channel between the BS and MS at the system level [16]. In 
contrast, this simulator utilizes the propagation characteristic information obtained 
from ray tracing calculations applied to indoor real environment models generated from 
point cloud data. Specifically, it uses information on propagation loss, angles of arrival 
of waves, and propagation delay computed by ray tracing.  
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Figure II-17.2-1 shows an image of the evaluation environment in this simulator. This 
simulator is capable of displaying an evaluation environment image using point cloud 
data obtained from any environment, and the figure is generated using point cloud data 
collected from a conference room. By utilizing image data acquired simultaneously with 
the point cloud data from a camera, the actual conference room is reproduced in color. In 
the simulator, both the base stations (BS) and mobile stations (MS) can be positioned at 
arbitrary locations, and here, the evaluation environment is shown with 2 BSs and 6 
MSs. When placing multiple BSs, by inputting the ray tracing calculation results for the 
placement of MS holistically within the evaluation area for each BS into the tool, it is 
possible to evaluate the throughput of the MS at any arbitrary location. However, the 
system does not accommodate MS movement. 

Additionally, this simulator can visually capture the relationship between propagation 
characteristics and throughput characteristics by displaying a color map of the 
propagation parameters. The calculation parameters for the ray tracing are shown in 

  
Figure II-17.2-1: An image of the evaluation environment in this simulator using point 

cloud data 

Table II-17.2-1   parameters for the ray tracing 

  
 

MS

BS
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Table II-17.2-1. In the ray tracing calculations, polygon data generated from point cloud 
data obtained in the conference room shown in Figure II-17.2-1 was input into Wireless 
Insight, a commercial ray tracing tool. The center frequencies were set to 4.7 GHz, 28 
GHz, and 100 GHz, assuming configurations for 5G and 6G. The antennas for both the 
BS and MS are omnidirectional antennas, with the BS antenna height set at 2.0 m and 
the MS antenna height set at 1.5 m, and the ray search condition was set to 7 reflections. 
The material of the walls was calculated as concrete. 
 
II-17.3.  Evaluation Results of a 6G Simulator in a Conference Room Generated from 

Point Cloud Data 

Examples of propagation characteristics calculated through ray tracing are shown in 
Figures II-17.3-1 to II-17.3-3. These figures represent color maps of the received level, 
delay spread, and angle spread in the horizontal plane on the MS side at 100 GHz. It can 
be observed that the received level is high near the BS, and due to reflections, the angle 
spread becomes larger near the walls of the conference room.  

Next, based on the propagation parameters calculated from the above ray tracing, we 
describe the throughput characteristics computed by this simulator. The parameters for 
the system-level simulation using this simulator are shown in Table II-17.3-1. Fading 
channels are generated from the propagation loss, propagation delay, and angles of 
arrival calculated for each ray in the ray tracing, and the throughput is calculated when 
beamforming (BF) and MIMO spatial multiplexing are performed using Massive MIMO.  
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Figure II-17.3-1   the color map of 

received level 
 

 
 Figure II-17.3-4   the user throughput 

(4.7 GHz) 
 

 
 Figure II-17.3-2   the color map of delay 

spread 
 

 
 Figure II-17.3-5   the user throughput (28 

GHz) 
 

 
 Figure II-17.3-3   the color map of angle 

spread 

 
 Figure II-17.3-6   the user throughput 

(100 GHz) 

MS #0 581.5Mbps

MS #1 510.3Mbps

MS #3 633.3Mbps

MS #4 738.8Mbps

MS #2 535.8Mbps

MS #5 721.3Mbps

BS #0

BS #1

MS #0 1.6Gbps

MS #4 2.5Gbps

MS #2 1.2Gbps

MS #5 1.5Gbps

BS #0

BS #1

MS #0 21.1Gbps

MS #1 21.1Gbps

MS #3 84.5Gbps

MS #4 71.8Gbps

MS #2 10.6Gbps

MS #5 12.4Gbps

BS #0

BS #1
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Figures II-17.3-4 to II-17.3-6 show the downlink (DL) user throughput at 4.7 GHz, 28 

GHz, and 100 GHz when two BSs and six users are placed. The figures display the user 
throughput for MS#0 to MS#5, indicated by red circles. It can be observed that MS#3 
and MS#4, which are located in areas with high received levels and large angle spreads 
as shown in Figure II-17.3-1, achieve relatively high throughput. The average 
throughput of the six MSs at 4.7, 28, and 100 GHz is approximately 0.62, 1.9, and 37 
Gbps, respectively. This confirms that utilizing higher frequency bands improves 
throughput due to the effects of increased bandwidth.  
 Furthermore, Figure II-17.3-7 shows the throughput map for the case of 100 GHz. 
Here, the BS is positioned as BS#0 in Figure II-17.3-6, and the throughput is displayed 
in a color map when only the position of one MS is changed. As in the previously 
mentioned cases, it can be seen that a throughput of 100 Gbps is achieved in areas with 
high received levels.  

Table II-17.3-1   the parameters of system-level simulations 

  
 

 
 

 Figure II-17.3-7   the color map of user throughput (100 GHz) 
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II-17.4.  Conclusions 

 In this work, we discussed the development of a simulator that can evaluate system 
performance in any environment using real environment models based on point cloud 
data as an enhancement of the 6G simulator. In the future, we plan to conduct 
performance evaluation and high-precision improvements of the simulator by comparing 
throughput measured using experimental equipment in real environments with the 
calculation results from this simulator. Additionally, towards the future development of 
tools that can dynamically control and optimize 6G using CPS, we will advance technical 
studies for high precision and fast processing in propagation simulations using real 
environment models, as well as link-level and system-level transmission simulations. 
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Abstract— In this article, we discuss that a Digital-Twin can be both digital 

representation of real-world, i.e. Digital-Twin by Beyond 5G, which could be enabled by 
advanced Beyond 5G capabilities, and digital representation of network objects, i.e. 
Digital-Twin for Beyond 5G, which helps to enable advanced Beyond 5G capabilities. 
Federating and jointly optimizing various Digital-Twin instances of both real-world and 
network objects is essential to realize new services in the era of Beyond 5G, and thus 
propose a Digital-Twin architecture which manages various Digital-Twin instances in a 
common way so that any Digital-Twin applications can easily utilize them. We then 
introduce probabilistic Digital-Twin, which can improve both efficiency and safety of 
many Digital-Twin use cases by considering uncertainties inherent in the real world, 
and cross-domain orchestration of Digital-Twins, which will be a key to realize the 
digital-first services. Finally, we introduce some of examples of the Digital-Twins 
discussed in this article, including radio communication environment, human-robot 
cooperation, and smart sustainable mobility. 
 
II-18.1.  Introduction 

Digital-Twin is a digital reproduction of objects in physical space (cars, jet engines, 
people, buildings, cityscapes, etc.), or potentially in virtual space or so called Metaverse. 
It is expected to be an important technology for various ICT systems in factories, aviation, 
connected cars, smart cities, smart buildings, etc., in realizing advanced Cyber Physical 
Systems. The concept of Digital-Twin has been introduced in various literature since the 
2000s, and widely accepted in recent years when several literatures, such as [1], has 
been known. Also, several articles, such as [2], provides an extensive survey on Digital-
Twins, including enabling technologies and technical issues. 

As an extension of classical notion of Digital-Twin, which is a one-to-one 
correspondence between objects in physical space and objects reproduced in virtual space, 
Digital Twin Network [3] has been proposed to represent of networks of multiple objects 
so that various objects in real and virtual space share information and cooperate to 
perform specific tasks in connected cars, smart cities, etc. In addition, Cognitive Digital 
Twin [4] focuses on knowledge representation, called ontology, to handle various types 
of objects in the real world. This is expected to enable more sophisticated applications by 
sharing digital twins between different systems. 
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Digital-twin, sometimes called Network Digital-Twin, is also used to plan, design, 
manage, simulate, operate, and control networks, as discussed by ITU-T [5], IOWN 
Global Forum Digital [6], and TMforum [7]. In this case, the Digital-Twin is a digital 
reproduction of any network devices, edge/cloud computing resources, terminal devices 
or robots which has network interfaces, radio communication environments measured or 
estimated by various sensing devices, or even logical networks and services. 
 
II-18.2.  Digital-Twin Platform Architecture with Beyond 5G 

The key concept of the proposed Digital-Twin platform architecture is: 
1) Digital-Twin instances of both real-world and network objects can be handled freely 
without any distinctions, and 
2) Various Digital-Twin instances can be easily federated and jointly optimized, 

so that any Digital-Twin applications can easily utilize them to realize new services in 
the era of Beyond 5G. 
Figure II-18.2-1 shows the proposed framework. As above discussed, target physical 

objects include any real-world and network objects. Other logical objects such as logical 
networks could also be included. Any measurement data are collected from them to 
reconstruct them in the Digital-Twin space, using any sensing/control devices like 
cameras, radio monitors, ISAC (Integrated Sensing and Communications), and legacy 
network managers such as syslog or EMS. Raw data analysis, such as object detection 
from video images, could be done here to extract meaningful information from the raw 
data. Then, common Digital-Twin functions would be provided by the platform so that 
Digital-Twin applications can utilize the Digital-Twin instances through common and 
open APIs. The functions include 1) device connectivity function to connect any kinds of 
sensing/control devices through common interfaces like WoT or MQTT, 2) device 
abstraction function to easily utilize various versions of devices in a common way, 3) data 
management functions to manage the data of any Digital-Twin instances, 4) various 
analysis functions, such as probabilistic inference discussed below, commonly useful for 
many Digital-Twin applications, and 5) Data isolation and access control function so that 
different applications can share the data and federate each other. Those functions may 
use common open source platforms like Eclipse Ditto [8]. 
Figure II-18.2-2 shows the implementation of Digital-Twin in distributed infrastructure. 

As its nature, physical devices, sensing/control functions, as well as raw data analysis 
are implemented on local devices or edge computing devices. Digital-Twin functions are 
applications are implemented on distributed computing and storage infrastructure and 
mutually interconnected via high-speed and low-latency communication infrastructure. 
We also note that all those functions shown in Figure II-18.2-1 and Figure II-18.2-2 are 
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enabled on an advanced Beyond 5G communication, computation, and storage 
infrastructure. 

 
Figure II-18.2-1 Digital-Twin Platform Architecture 

 
Figure II-18.2-2 Digital-Twin Implementation in Distributed Infrastructure 

 
II-18.3.  Functional Design 
II-18.3.1.  Probabilistic Representation of Digital-Twin 

Safety and trustability are critical for many Digital-Twin applications in many real-
world use cases and thus “Probabilistic Digital-Twin”,  in which risk management can 
be better handled through probabilistic representation of the real-world, and 
probabilistic prediction and probabilistic control based on the probabilistic 
representation, has been proposed [9]. Use cases of the probabilistic Digital-Twin 
includes following examples. 

• Human Robot Collaboration, autonomous robot, automatic driving (Figure II-
18.3.1-1 left): Risk sensitive path/speed/behavior control with probabilistic 
information for Improved/optimized/controlled safety. 
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• Remote-controlled robot (Figure II-18.3.1-1 center): Move slowly in unstable 
radio condition, avoid unstable signal area for Robust operation, avoid risks, etc. 

• Network design and control (Figure II-18.3.1-1 right): BS (Base Station) location 
design and beam forming control based on probabilistic radio environment map 
for cost effective, robust, application aware network design and control.  

 
Figure II-18.3.1-1 Digital-Twin Implementation in Distributed Infrastructure 

 
Figure II-18.3.1-2 shows an example of a data structure for probabilistic Digital-Twin. 

In between Digital-Twin applications and devices, a space-time structure is composed of 
many objects in the 4D space. These objects may be a physical object in the space (orange 
dot) or a status of a lattice point in the 4D space (green dot). Properties of these objects, 
such as occupancy status of the lattice point, location of the objects, identity/class of the 
objects are expressed as a probability distribution, rather than a specific value. 

 
Figure II-18.3.1-2 Data Structure for Probabilistic Digital-Twin 

 
II-18.3.2.  Cross-Domain Orchestration of Digital-Twins 

Today, many smart cities are introducing digital twins, using IoT sensors to collect 
and monitor urban data. Conventionally, they have put much effort to digitize physical 
space on cyber space in order to analyze and simulate the real world through data for 
situation monitoring and decision making. From now, we will focus on feedback to the 
real space to implement the results of analysis and simulation, which is called “digital-
first” paradigm [10]. The digital twin collaboration will be the key to realize the digital-
first services. 
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The beyond 5G/6G functional architecture[14] is an open platform to receive a diverse 
set of functions. One of the key components is the orchestrator, which is responsible for 
finding the right combination of system components and linking them together to meet 
the requirements from a CPS service. The orchestrator facilitates the coordination of 
digital twins across industries to realize a myriad of new value-added services.  

To facilitate information sharing and interaction between digital twins among 
different domains, orchestrators are required to have the functions shown in Figure II-
18.3.2-1. The federation function configures and manages federations of digital twins 
that update a shared virtual model while maintaining privacy data generated by 
physical objects within individual digital twins. The translation function facilitates the 
formal and semantic transformation of communications between digital twins in 
different domains. The brokering function identifies and authenticates digital twins, 
relays data transmission and reception, performs data filtering, real-time delivery, and 
guarantees delivery. The synchronization function synchronizes many-to-many 
interactions between physical space entities and cyberspace models between digital 
twins. The registry function registers and discovers digital twin components based on 
their feature information. International standardization of these functions is also 
underway [18]. 

 
Figure II-18.3.2-1 Functional Architecture of the Digital Twin Orchestrator 
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II-18.4.  Use Case Examples 
II-18.4.1.  Digital-Twin for Radio Communication Environment 

This use case is to manage the radio communication network via Digital-Twin. 
Stability of radio communication is crucial for mission critical communications such as 
remote robot operations or connected car operations. However, radio communication is 
heavily affected by radio environments, so it is very important to understand the radio 
environment in detail as a Digital-Twin to manage radio communications. 

As discussed in Section 3.1, it is quite difficult to monitor, estimate, and predict the 
radio environment, especially when high frequency radio like mm-Wave is used for 
mobile communications. For example, RSRP (Reference Signal Received Power) varies 
greatly depending on the position and angle of the terminal, as shown in Figure II-18.4.1-
1, thus it should be quite useful to construct the Digital-Twin of radio environment using 
probability distributions, as shown in Figure II-18.4.1-2. To construct probabilistic 
representation of radio environment as a Digital-Twin, various statistical methods have 
been proposed, such as a method using Markov Random Field (MRF) [15] and Gaussian 
Process Regression (GPR) [16]. 

 

 

Figure II-18.4.1-1 Changes in RSRP (28 GHz Local 5G environment (Band n257), one 
rotation of the terminal in 50 seconds) 

 

 
Figure II-18.4.1-2 Estimated Radio Environment Map and its Probability Distribution 
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Probabilistic Digital-Twin of radio environment can be used for radio network design 

in which estimated RSRP value should be larger than required value plus certain margin 
at each location. We proposed to set the margin based on the inferred probability 
distribution, rather than to set a uniform margin. As shown in Figure II-18.4.1-3, when 
the target coverage rate, i.e. the ratio of points that the observed RSRP value is within 
the margin, is set to 90%, the proposed method can achieve this by using a 1.1σ interval 
as the margin at each point, whereas the conventional method requires a uniform 1.9σ 
interval average as the margin. The probabilistic Digital-Twin can also be used for 
dynamic beam forming. As shown in Figure II-18.4.1-4, RSRP map would be estimated 
after beam change to see if the change is effective for the robot locations in the field, or 
the map would be estimated before beam change to select the best beam to satisfy the 
communication requirements of the robots in the field.  

 

 
Figure II-18.4.1-3 Probabilistic Digital-Twin for radio network design (ratio of points 

that the observed value is within the margin) 
 

 
Figure II-18.4.1-4 Probabilistic Digital-Twin for dynamic beam forming (estimated 

RSRP map and robot locations) 
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II-18.4.2.  Digital-Twin for Human-Robot Cooperation 

Robots are widely utilized in industrial sites due to the decrease in the number of 
workers. However, there are many sites where it is difficult to replace all operations with 
robots due to cost and environmental adaptability, and robots and workers need to 
coexist. A logistics facility is a such site. 

Logistics facilities have become larger and larger in recent years, and robots (AGVs 
and AMRs) are increasingly used to transfer goods inside them. On the other hand, there 
are many tasks that are difficult for robots to handle goods directly, for example picking 
and repacking goods, so manual labor is also indispensable. Therefore, workers and 
transfer robots coexist. Although there are some sites that separate the space for both 
workers and robots, it is desirable for both to be able to coexist safely in the same space 
to increase the efficiency of space utilization in the facility. In such cases, the trade-off 
between safety and efficiency becomes an issue. A typical transfer robot restrains its 
speed so that it can stop when an obstacle including workers approaches, and once it 
recognizes the obstacle, it stops. While this ensures safety, it inevitably reduces transfer 
efficiency. This trade-off can be resolved by utilizing probabilistic Digital Twin to predict 
the future location of the worker and control robots to consider the risk of collision and 
speed reduction. Each of the location prediction and control techniques is introduced in 
detail below. 

However, sensors inevitably have blind spots, and there is a delay between detection 
of location of an obstacle and robot control, so obstacle location information at the time 
when the robot is operating is needed. To solve this problem, the presence or absence of 
obstacles at each time and point in the robot operation area is expressed as a probability, 
and based on the observed information, the condition of the blind spots and the future 
condition at each point are estimated as probabilities (See Figure II-18.4.2-1). When 
estimating the probability, it is important to understand the relationship of obstacles in 
space and time. In other words, for moving obstacles, if the obstacle is within a certain 
distance in the direction of movement from the point where it was observed at the 
previous time, the probability of its presence is high, but if it is further away than a 
certain distance, the probability of its presence is low. We represent such a spatial-
temporal relationship between the presence and absence of obstacles as a conditional 
random field, CRF, and by mapping the observed values, we construct a model that 
predicts the future situation of obstacles from the current obstacle situation based on the 
observed values[11]. 
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a: Probability of obstacle existence at each point 

(yellow is high, red is middle, blue is low) 

 
b: Prediction of worker’s future 

location 
Figure II-18.4.2-1 Prediction of future location of obstacle 

 
After the location of future obstacles is estimated, it is necessary to control the route 

and speed of the transfer robot to travel safely and efficiently considering real-world 
uncertainties. Risk-sensitive stochastic control [12][13] solves these problems. In risk-
sensitive stochastic control, the robot's motion equation is defined as a stochastic 
differential equation (see Figure II-18.4.2-2-a) because it represents the uncertainties 
that affect the robot's motion, such as hardware degradation and ground conditions, as 
a model. An evaluation function is used to choose optimal control inputs, and we design 
it to evaluate both safety and efficiency, as well as to be sensitive to risk (see Figure II-
18.4.2-2-b). Although the value of the evaluation function will be a probability 
distribution because stochastic differential equation is used as equation of motion, it is 
possible to select the control that reduces both the value that the smaller is better and 
the variance as the optimal one. To determine the actual control inputs, various control 
inputs are prepared in advance, and the path and speed determined by solving stochastic 
differential equations are evaluated with the risk-sensitive evaluation function to select 
the optimal control (See Figure II-18.4.2-2-c). 

a: Stochastic differential equation 

 
c: Safe and efficient path 

b: Risk-sensitive evaluation function 

Figure II-18.4.2-2 Risk-sensitive stochastic control 
 
II-18.4.3.  Smart Sustainable Mobility 

Today, the environment and mobility are major issues for many smart cities. Here we 
assume the following digital twin; the smart environment digital twin monitors air 
pollution by collecting air quality data from observation stations, while restricting 
emissions at major sources when air pollution is expected to worsen; the smart driving 
digital twin monitors the driving environment of individual cars using in-vehicle sensors, 
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while guiding driving maneuvers and travel routes according to changes of the 
environment. The eco-driving assistance, an application of digital twin orchestration 
owned by a city officer, aims to improve the city’s environmental quality by 
recommending environment-friendly driving maneuvers to drivers and autonomous cars 
in areas with poor environmental quality. Based on the emission restriction plan 
simulated by the smart environment digital twin, the smart driving digital twin 
instructs the navigation system to perform driving maneuvers to control emissions. 
Furthermore, it enhances the air pollution prediction of the smart environment digital 
twin using environmental sensor data captured by the cars, which enables more effective 
eco-driving assistance.  

Figure II-18.4.3-1 show interactions between these digital twins through the 
orchestrator functions. The federation function shares the air pollution prediction model 
of the smart environment digital twin with the smart driving digital twin for federated 
learning using private data collected by individual car. The brokering function allows 
application to receive the emission restriction plan generated by the smart 
environmental digital twin, determines the restriction order for cars driving in the 
restricted area, and can send the order to the smart driving digital twins of the target 
cars. The translation function converts the environmental sensor data collected by the 
smart driving digital twin of individual cars to the format of observation data in the 
smart environment digital twin to import the “mobile” observation data for denser 
prediction of air pollution. 

Implementation of the orchestrator framework is promoted for individual digital twin 
platforms as a common interface of inter-platform digital twin orchestration. The first 
implementation of the orchestrator framework and the use case is being conducted on 
NICT xData Platform [17] and Testbed. The framework implementation for IOWN is 
also being discussed in IOWN Global Forum based on mapping the orchestrator 
functions to the IOWN Data Space for Digital Twin Applications architecture [19]. In 
addition, integrated architecture of the orchestrator between physical space and cyber 
space is included in our future work. 
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Figure II-18.4.3-1: Smart sustainable mobility use case 

 
II-18.5.  Conclusion 

In this article, we argued that a Digital-Twin can be digital representation of both real-
world network objects. Based on this, we proposed a Digital-Twin architecture which 
manages various Digital-Twin instances in a common way so that any Digital-Twin 
applications can easily utilize them. We then introduced probabilistic Digital-Twin and 
cross-domain orchestration of Digital-Twins, as well as the use cases including radio 
communication environment, human-robot cooperation, and smart sustainable mobility. 
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Abstract— The vision for 6G networks is to offer pervasive intelligence and internet of 

intelligence, in which the networks natively support artificial intelligence (AI), empower 
smart applications and scenarios in various fields, and create a "ubiquitous-intelligence" 
world. In this vision, the traditional session-oriented architecture cannot achieve flexible 
per-user customization, ultimate performance, security and reliability required by future 
AI services. In addition, users' requirements for personalized AI services may become a 
key feature in the near future. By integrating AI in the network, the network AI has 
more advantages than cloud/MEC AI, such as better QoS assurance, lower latency, less 
transmission and computing overhead, and stronger security and privacy. Therefore, 
this article proposes the task-oriented native-AI network architecture (TONA), to 
natively support the network AI. By introducing task control and quality of AI services 
(QoAIS) assurance mechanisms at the control layer of 6G [1]. 
 
II-19.1.  Introduction 

This explains the needs of Native-AI based 6G Wireless Network Architecture and lists 
of reason that requires to shift to task-oriented system mechanism. The proposed NW 
architecture called Task-Oriented native-AI network architecture (TONA), to natively 
support the network AI that create a "ubiquitous-intelligence" world. Reflecting the 
proceeding transformation, this article further proposes TONA to meet personalized AI 
service demand and requirements. This article mainly:  
(1)  Introduces three-layer logical architecture of task management and control system, 

and designs the task lifecycle management procedures, which include the 
collaboration of multi-dimension heterogeneous resources (communication, 
computing, data, and algorithm) and multi-node at the control layer.  

(2) Defines task-specific QoAIS indicators for the mapping from Service Level Agreement 
(SLA) indicators — e.g., service requirement zone (SRZ) and user satisfaction ratio 
(USR) — to QoAIS indicators, and discusses task-level QoS assurance to meet 
individual requirements of different users.  

(3) Compares the network AI and cloud/mobile edge computing (MEC) in terms of QoAIS 
indicators. Thanks to providing the AI executing environments closer to UE, TONA 
is anticipated to have some advantages, such as better data privacy protection, lower 
latency, and lower energy consumption. 
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II-19.2.  Network Paradigm  Change 

The TONA, as shown in Figure II-19.2-1, introduces the orchestration and control 
functions as well as the resource layer in network AI. The control function uses control 
layer signaling to control multi-nodes (UEs, base stations, and CN NEs) and 
heterogeneous resources in real-time. We believe that the 6G network architecture 
requires the following changes in the design paradigm: 
(1) Change 1: The object to be managed and controlled in network are changed from 

sessions to tasks. 
(2) Change 2: The resources of the object are changed from one dimension to multi-

dimensions, from homogeneous to heterogeneous. 
(3) Change 3: The object control mechanism are changed from session-control to task-

control. 
(4) Change 4: The performance indicators of the object are changed from session-QoS to 

task-QoS. 

Fig. II-19.2-1 Network paradigm changes 
 
II-19.2.1.  Change 1: From Session to Taks 

AI tasks differ from traditional sessions in terms of technical objectives and methods.  
In terms of technical purposes, a traditional communications system provides session 

services, typically between terminals or between terminals and application servers, to 
transmit user data (including voice). Conversely, network AI (i.e., NE intelligence and 
network intelligence) aims to provide intelligent services for networks and improve 
communication network efficiency. Service intelligence seeks to provide app-specific 
intelligent services for third parties. Thus, sessions and AI tasks have different purposes. 
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II-19.2.2.  Change 2: From Single-dimension to Multi-dimension Heterogenous 
Resources 

The traditional wireless system establishes tunnels and allocates radio resources for 
data transmission. Conversely, TONA implements collaboration among heterogeneous 
resources of connection, computing, data and model/algorithm to execute AI tasks. Take 
an AI inference task as an example. 
 
II-19.2.3.  Change 3: From Session-control to Task-control 

Unlike session control, task management and control in network AI includes the 
following functions: (1) Decomposing and mapping from external services to internal 
tasks, (2) Decomposing and mapping from service QoS to task QoS, and (3) Providing 
heterogeneous and multi-node collaboration mechanisms to orchestrate and control 
heterogeneous resources of multiple nodes at the infrastructure layer in real-time (to 
implement distributed serial or parallel processing of tasks and real-time QoS 
assurance). 
 
II-19.3.  Architecture and Key Technologies 

This section describes the logical architecture and deployment options of TONA, and 
QoAIS details. 
II-19.3.1.  Logical Architecture of TONA 

First, we introduce fundamental basic concepts in wireless network. A 
communications system consists of a management domain and a control domain. The 
Operations Administration and Maintenance (OAM) deployed in management domain is 
used to operate and manage NEs through non-real-time (usually within minutes) 
management plane signaling. The control domain is deployed on core network (CN) NEs, 
base stations, and terminals, and features with real-time controlling signaling (usually 
within milliseconds). For example, an E2E tunnel for a voice call can be established 
within dozens of milliseconds by control signaling. 

Unlike the centralized, homogeneous, and stable AI environment provided by the cloud, 
the network AI faces the following technical challenges when embedded in the wireless 
networks: (1) AI needs to be distributed on numerous CN NEs, base stations, and UEs. 
Therefore, it is necessary to consider how to manage the massive number of nodes 
efficiently in the architecture design. (2) The computing, memory, data, and algorithm 
capabilities of different nodes vary significantly, requiring the architecture design to also 
consider how to efficiently manage these heterogeneous nodes efficiently. (3) The 
dynamic variation of the channel status and the computing load need to be factored into 
the architecture design. To address the aforementioned challenges, TONA includes two 
logical functions, as shown in Figure II-19.3.1-1: (1) AI orchestration and management, 
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called Network AI Management & Orchestration (NAMO); and (2) task control. NAMO 
decomposes and maps AI services to tasks and orchestrates the AI service flows. It is not 
performed in real-time and is generally deployed in the management domain. Task 
control introduces the Task Anchor (TA), Task Scheduler (TS), and Task Executor (TE) 
functions in the control domain in three layers. This layered design strikes a balance 
between the task scope and real-time task scheduling, and effectively manages the 
numerous, heterogeneous nodes and aware of dynamic change of heterogeneous 
resources (e.g. channel status and computing load). 

 

Fig. II-19.3.1-1 Logical architecture of TONA 
 
II-19.3.2.  Deployment Architectures 

The statuses of TEs (e.g., the CPU load, memory, electricity, and UE channel status) 
change in real-time. As such, deploying TA and TS close to each other can reduce the 
management delay. According to the design logic of wireless networks, the CN and RAN 
need to be decoupled as much as possible. For example, the CN should be independent 
of RAN Radio Resource Management (RRM) and Radio Transmission Technology (RTT) 
algorithms. Therefore, this article recommends that TA/TS be deployed on RAN and CN, 
named RAN TA/TS and CN TA/TS, respectively. This way will allow TA to manage TEs 
in real-time flexibly. Four deployment scenarios of TONA are shown in Figure II-19.3.2-
1 to describe the necessity and rationality of CN TA and RAN TA. These scenarios are 
only examples — there may be other deployment scenarios and architectures. 
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Scenario 1: gNodeB + UEs. In this scenario, the gNodeB serves as both TA and TS, and 
the UEs serve as TEs. Here, a UE is a computing provider and task executor, which 
accepts task assignment and scheduling from the gNodeB. The Uu interface and Radio 
Resource Control (RRC) layer between the gNodeB and the UE can be enhanced to 
support task controlling and scheduling purposes.  
Scenario 2: CU + DUs. In this scenario, the CU serves as both TA and TS, and the DUs 
serve as TEs. Here, a DU is the computing provider and task executor. The F1 interface 
and F1-AP layer between the CU and the DU can be enhanced to support task controlling 
and scheduling purposes. 

Fig. II-19.3.2-1 Four deployment scenarios of TONA 
 
II-19.4.  Advantage Analysis 

Compared with cloud/MEC AI, the TONA and QoAIS have the following advantages 
(summarized in Table 2) in meeting users' customized AI service requirements: 
(1) QoAIS assurance 
Dynamic wireless environments require joint optimization of the heterogeneous 
resources (connection and three AI resources) to achieve precise QoAIS assurance. 
(2) Latency  
TONA computing is distributed on NEs closer to UEs or even directly on UEs to process 
data locally. This not only successfully achieves real-time and low-latency AI services, 
but also significantly reduces data transmission. In the cloud/MEC AI mode, a large 
amount of data needs to be transmitted to the cloud/MEC for training, meaning that E2E 
data transmission takes longer to complete. 
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(3) Overhead  
TONA can optimally allocate resources through the real-time collaboration mechanism 
of the heterogeneous resources, maximizing the overall resource utilization and reducing 
the transmission and computing overheads. Conversely, because the cloud/MEC AI 
cannot adapt to dynamic environments, it allocates resources based on only the 
maximum resource consumption to ensure QoAIS. As a result, the overall resource 
utilization is low, and the resource overhead is high. 
(4) Security 
TONA has native data security and privacy protection capabilities because it processes 
data inside the network. Unlike TONA, the cloud/MEC AI protects data privacy only at 
the application layer. 
 
II-19.5.  Conclusion 

To meet the 6G vision of pervasive intelligence and internet of intelligence, TONA is 
proposed to support efficient collaboration of heterogeneous resources and multi-node in 
wireless networks, and to provide new services in the form of tasks at the network layer. 
By bringing new dimensions of resources to 6G networks (i.e., computing, data, and 
model/algorithm), this architecture enables the SLA assurance of computing related 
services such as AI services, further explores the application scenarios of 6G networks, 
and enriches the value of wireless networks. Furthermore, the task concept and TONA 
proposed in this article support not only AI tasks, but also sensing-, computing- and data 
processing-specific tasks. 
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Abbreviation List 

Abbreviation Explanation 

3GPP 3rd Generation Partnership Project 

5G 5th Generation mobile communication systems 

6G 6th Generation mobile communication systems 

AA Actor Allocator 

Adam Adaptive Moment Estimation 

AGV Automatic Guided Vehicle 

AI Artificial Intellegence 

AI-AI Ai-native Air Interface 

AM Amplitude Modulation 

AMR Autonomous Mobile Robot 

AP Access Point 

API Application Programming Interface 

AR Augmented Reality 

BER Bit Error Rate 

BF Beamforming 

BLER Block Error Rate 

BM Beam Management 

bMRO beam-based Mobility Robustness Optimization 

BS Base Station 

BSS Business Support System 

CDF Cumulative Distribution Function 

CF-mMIMO Cell-free massive MIMO 

CIR Channel Impulse Response 

CLC Closed-Loop Control 
CMOS Complementary Metal-Oxide-Semiconductor 

CN Core Network 

CNN Convolutional Neural Network 

CPS Cyber-Physical System 

CPU Central Processing Unit 

CSI Channel State Information 
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Abbreviation Explanation 

CSI-RS Channel State Information Reference Signal 
CU Central Unit 

DC Direct Current 

DCNN Deep Convolutional Neural Network 

DDQN Double Deep Q Network 

D-DRL Distributed DRL 

DL Downlink 

DM-RS Demodulation Reference Signal 

DNN Deep Neural Network 

DPD Digital Predistortion 

DRL Deep Reinforcement Learning 

DSP Digital Signal Processing 

DT Digital Twin 

DU Distributed Unit 

eBPF extended Berkley Packet Filter 

eMBB enhanced Mobile Broadband 

EMS Electronics Manufacturing Service 

ES Energy Saving 

EVM Error Vector Magnitude 

FC Fully Connected 

FDE Frequency Domain Equalization 

FFT Fast Fourier Transformation 

FL Federated Learning 

FNN Fully connected Neural Network 

FPGA Field Programmable Gate Array 

GA Genetic Algorithm 

gNB gNodeB 

GNN Graph Neural Network 

GoB Grid of Beams 

GPR Gaussian Process Regression 

GPU Graphics Processing Unit 
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Abbreviation Explanation 

Grand-CAN Gradient-weighted Class Activation Mapping 

HDD Hard Disk Drive 

HLF Horizontal Federated Learning 

HSL Horizontal Split Learning 

IBO Input Back Off 

IFFT Inverse FFT 

IMT International Mobile Telecommunication 

INL In-Network Learning 

IoT Internet of Things 

IOWN Innovative Optical and Wireless Network 

ISAC Integrated Sensing And Communications 

ITU-R International Telecommunication Union-
Radiocommunication Sector 

KPI Key Performance Indicator 

LAN Local Area Network 

LCM Life Cycle Management 
LiDAR Light Detection And Ranging 

LLM Large Language Model 

LLR Log-Likelihood Ratio 

LMF Location Management Function 

LOS Line-Of-Sight 

LQ Link Quality 

MCS Modulation and Coding Scheme 

MDP Markov Decision Process 

MDT Minimization of Drive Tests 

MEC Mobile Edge Computing 

MEC Multi access Edge Computing 

MIMO Multiple input Multiple Output 
ML Machine Learning 

MLP Multi-Layer Perceptron 

mMIMO massive MIMO 

mmWave millimeter Wave 
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Abbreviation Explanation 

MP Memory Polynomial 
M-plane Management plane 

MPLS-TE Multiprotocol Label Switching - Traffic Engineering 

MQTT Message Queuing Telemetry Transport 
MRF Markov Random Field 

MS Mobile Station 

MU-MIMO Multi-User MIMO 

MVP-C Minimum Viable Plan Committee 

NAMO Network AI Management and Orchestration 

NE Network Element 
Near-RT RIC Near-Real-Time RIC 

NLOS Non-Line-Of-Sight 

NN Neural Network 

Non-RT RIC Non-Real-Time RIC 

NR New Radio 

NRNT New Radio Network Topology 

NSSMF Network Slice Subnet Management Function 

NW Network 

OAM Operations, Administration, Maintenance 

O-CU-CP O-RAN Central Unit - Control Plane 

O-CU-UP O-RAN Central Unit - User Plane 

O-DU O-RAN Distributed Unit 
OFDM Orthogonal Frequency Division Multiplexing 

OLPC Outer-Loop Power Control 

O-RAN Open Radio Access Network 

O-RU Open RAN Radio Unit 

OSS Operation Support System 

OTT Over-The-Top 

PA Power Amplifier 

PF Proportional Fairness 

PGW Packet data network Gateway 
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Abbreviation Explanation 

PL Path Loss 

PM Performance Metric 

PoC Proof-of-Concept 

PS Parameter Server 

Q1 the first Quarter 

QAM Quadrature Amplitude Modulation 

QoAIS Quality of AI Services 

QoE Quality of Experience 

QoS Quality of Service 

QPSK Quadrature Phase Shift Keying 

R&D Research and Development 

RAN Radio Access Network 

rApp RAN intelligent controller Application 

RAT Radio Access Technology 

ResNet Residual Network 

RF Radio Frequency 

RF Random Forest 

RIC RAN Intelligent Controller 

RIS Reconfigurable Intelligent Surface 

RL Reinforcement Learning 

RMS Root Mean Square 

RMSE Root Mean Square Error 

ROS Robot Operating System 

RRM Radio Resource Management 

RS Relay Station 

RSRP Reference Signal Received Power 

RSSI Received Signal Strength Indicator 

RT Ray Tracing 

RTT Radio Transmission Technology 

RVTDNN Real-Valued Time-Delay Neural Network 

Rx Receiver 
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Abbreviation Explanation 

SA Static Approach 

SB Subband 

SC Single Carrier 

SCS Subcarrier Spacing 

SGCS Squared Generalized Cosine Simularity 

SINR Signal-to-Interference plus Noise Ratio 

SL Split Learning 

SLA Service Level Agreement 

SMO Service Management and Orchestration 

SNR Signal-to-Noise Ratio 

S-NSSAI Single-Network Slice Selection Assistance Information 

SON Self Organizing Network 

SOTA State-Of-The-Art 
SRZ Service Requirement Zone 

SSB Synchronization Signal Block 

STA Station 

SVM Support Vector Machine 

TA Task Anchor 

TAT Turn Around Time 

TBD To Be Determined 

TDD Time Division Duplex 

TDL Tapped Delay Line 

TE Task Executor 

TR Technical Report 

TRP Transmission and Reception Point 
TS Task Scheduler 

Tx Transmitter 

UCTG Use Case Task Group 

UE User Equipment 

UL Uplink 

UMa Urban Macro 
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Abbreviation Explanation 

UPF User Plane Function 

UPT User Perceived Throughput 

USR User Satisfaction Ratio 

vCPU Virtualized CPU 

VFL Vertical Federated Learning 

VNF Virtualized Network Function 

VR Virtual Reality 

vRAN virtual RAN 

VSL Vertical Split Learning 

WB Wideband 

WG Working Group 

WLAN Wireless Local Area Network 

WoT Web of Things 

WP Working Party 

XAI Explainable AI 

xAPP eXtended Application 

XGMF XG Mobile Promotion Forum 
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