Qualcom

Standardization of 5G-Advanced and 6G

Toru Uchino

Staff engineer, QISO

@qualcomm

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated.

Confidential - Qualcomm Technologies, Inc. and/or its affiliated companies - May Contain Trade Secrets

Mobile has made a leap every ~10 years

Analog voice

1980s

Mobile voice communication

AMPS, NMT, TACS

Digital voice

1990s

Efficient voice to reach billions

D-AMPS, GSM, IS-95 (CDMA)

Wireless internet

2000s

Focus shifts to mobile data

CDMA2000/EV-DO WCDMA/HSPA+

Mobile broadband

2010s

Mobile broadband and emerging expansion

LTE, LTE Advanced, Gigabit LTE

Connected intelligent edge

2020s

Connected intelligent edge

5G New Radio

The next innovation platform

Next-gen

wireless

2030s

Al-native, new spectrum, RF sensing, and many more...

Where are we in the cellular innovation cycle?

5 G

Ramping volume and expanding to new use case

5G ADVANCED

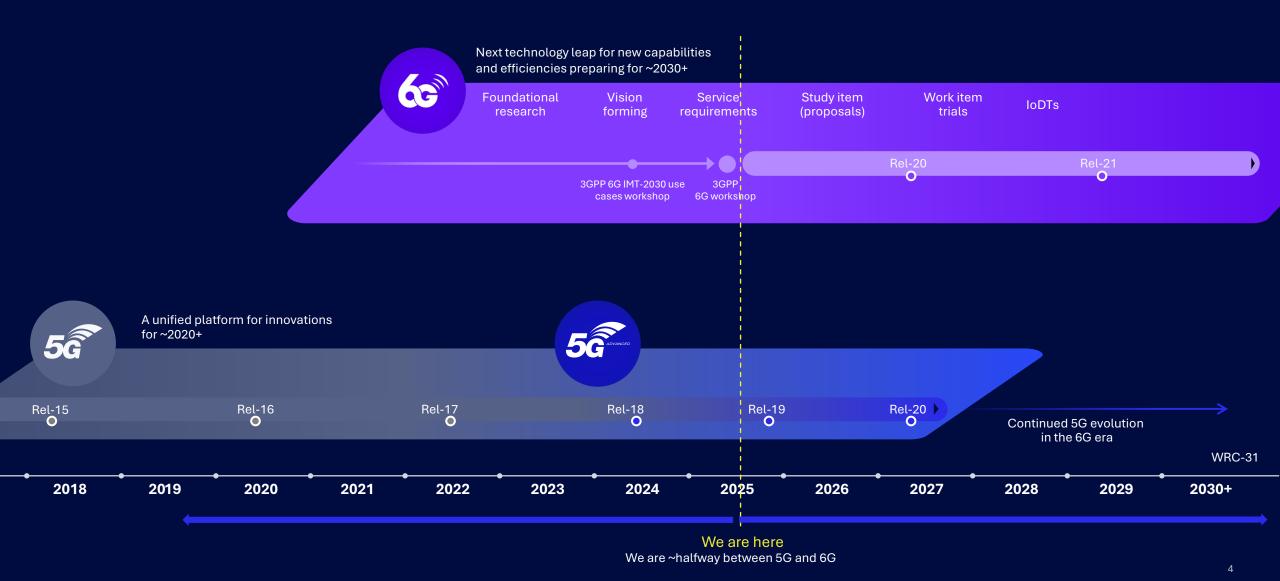
Completing 1st standard
—2nd phase of 5G innovations

6 G

Aligning on vision, foundational research, timeline, requirements

Deliver end-to-end prototypes and impactful demonstrations

PROOF-OF-CONCEPT


STANDARDIZATION

Drive e2e design with ecosystem and through standards process

TRIALS

Collaborate on OTA field trials that track 3GPP standardization and drive ecosystem towards rapid commercialization

On the path to 6G... from 5G and 5G Advanced

Qualcom

Key technology inventions in 5G Advanced Release 18 Leading the innovation pipeline for 5G Advanced and beyond

Enhanced Uplink

Broadband Evolution

IoT Advancement and Expansion

Efficient System Design

Wireless AI Foundation

To optimize device-tonetwork transmission performance

Enhancements to uplink MIMO, device coverage, mobility, CA power aggregation, and Tx switching

To improve mobile and fixed broadband experiences

Enhancements in MIMO performance, device mobility, DSS, CA enhancements, precise positioning, multi-SIM

To support new devices and enhanced smart device efficiencies

Improved XR, drone comm., RedCap efficiency, narrowband & sidelink positioning, small data Tx, low-power wakeup receiver

To capture energy-saving and flexible deployment opportunities

Network energy saving, networkcontrolled repeater, full duplex, NR-U sidelink, sidelink relay, mobile IAB, improved NTN, broadcast/multicast

To lay the groundwork for intelligently connected networks and devices

Evaluation of ML-based system design and use cases, e.g., channel feedback, beam management, positioning, mobility optimization

Release 18+

Mobile broadband evolution and further vertical expansion

Deliver enhanced mobile broadband experiences and extend 5G's reach into new use cases

Immediate commercial needs and longer-term 5G vision

Drive new value in commercialization efforts and fully realize 5G's potential with future deployments

New and enhanced devices and network evolution

Focus on the end-to-end technology evolution of the 5G system to bring new levels of performance

What's in 3GPP Release 18?

Strengthen the end-to-end 5G system foundation

Advanced DL/UL MIMO

Enhanced mobility

Mobile IAB, network-controlled repeater

Evolved duplexing

AI/ML data-driven designs

Green networks and devices

Proliferate 5G to virtually all devices and use cases

Boundless extended reality

RedCap evolution

Expanded sidelink

Expanded positioning

Drones & expanded satellites comm.

Multicast & other enhancements

5G Advanced Release 19 focus areas

3GPP Release 19

Realizing the full potential of 5G

Addressing real and urgent commercial needs

Mobile broadband evolution and further vertical expansion

Continue to enhance mobile experiences and extend 5G's reach into new areas

Immediate and longer-term commercial needs

Drive new value in commercialization efforts and efficiently enable advanced deployments

New and enhanced devices and network evolution

Focus on the end-to-end 5G technology evolution to bring new levels of performance

3GPP Release 19

Bridging to 6G

Establishing the technical foundation

Revolutionary system innovations

Conduct advanced research to prepare for formal 6G Study Items in Release 20

New spectrum bands and enabling technologies

Study feasibility of new band ranges and types (e.g., upper mid-band in 7-24 GHz)

Continued System Enhancements

DL/UL MIMO¹

Release 19

Topology (e.g., repeater, sidelink, WAB², ...)

Further Use Case Diversifications

Ambient IoT

Satellites evolution

XR and metaverse

New Advanced Capabilities

Wireless AI/ML

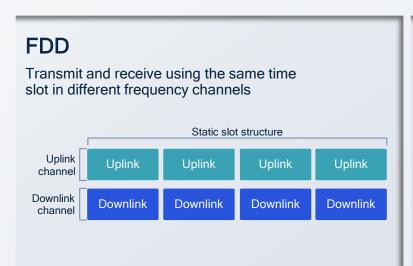
Network energy savings

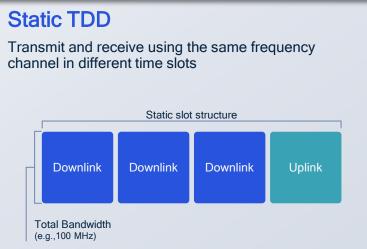
Low-power wakeup receiver

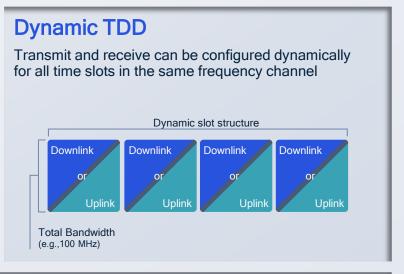
6G Technical Foundations

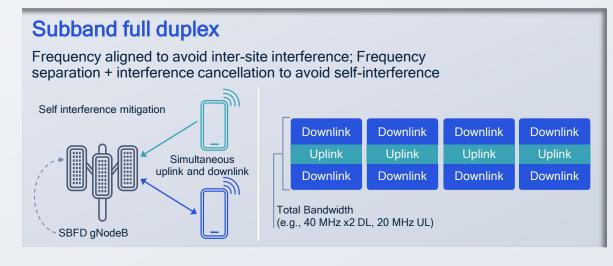
Duplexing evolution

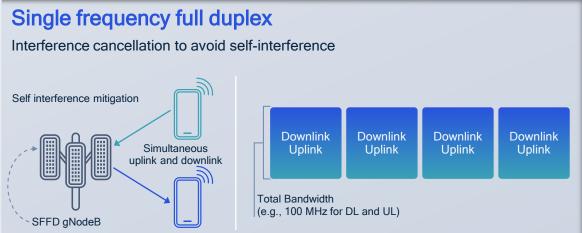
Higher mid-band spectrum (i.e., 7–16 GHz)




Integrated sensing and communication




Evolving towards a full duplex wireless system


Lower latency, better coverage, expanded capacity, flexible spectrum deployment and service multiplexing

Self Interference (SI) **Cross Link Interference (CLI)** Uplink Inter-gNodeB interference Clutter reflection Downlink Uplink Subband full Subband full Device duplex duplex aNodeB qNodeB Device Inter-device interference

Release 19 Work Item Scope

For subband non-overlapping full duplex operation at gNodeB within a TDD carrier:

Specify semi-static indication of time/frequency location of subbands to devices in connected mode

Specify SBFD operation to support random access in SBFD symbols by devices in connected mode

Study and specify, if justified, SBFD operation to device in idle/inactive mode for random access

Specify device transmission, reception, measurement behavior and procedures in SBFD symbols and/or non-SBFD symbols

Specify enhancements for inter-gNodeB/device CLI handling

Specify RF requirements for SBFD operation at gNodeB

Specify RRM core requirements for co-channel CLI handling mechanisms and SBFD operations

Addressing interferences in a full duplex wireless system

Subband operation allows SI/CLI to be more manageable due to uplink/downlink frequency separation

3GPP Release 19 Study

Pioneering new spectrum for wireless communications

Focusing on 7–24 GHz that can become the wide-area coverage band for 6G

COVERAGE CAPACITY

CAPACITY

LOW BAND
BELOW 1 GHz

MID-BAND 1 GHz – 7 GHz UPPER MID-BANDS
7 GHz – 24 GHz

mmWAVE 24 GHz – 100 GHz SUB-THZ
100 GHz & BEYOND

Wide bandwidths (e.g., 500 MHz) will be key to success of next-generation wireless systems

Studies on new bands need to begin today in preparation for WRC-27 (e.g., focused on 7.1–15.3 GHz range)

Release 19 Scope

Validate using measurements the channel model of <u>TR38.901</u> for 7–24 GHz

Adapt and extend, as necessary, the channel model of <u>TR38.901</u> for at least 7–24 GHz, also include scenarios of near-field propagation and spatial non-stationarity

3GPP Release 19 Study

Channel modeling for integrated sensing and communications

Primary focus on 0.5 – 52.6 GHz, scalable to 100 GHz

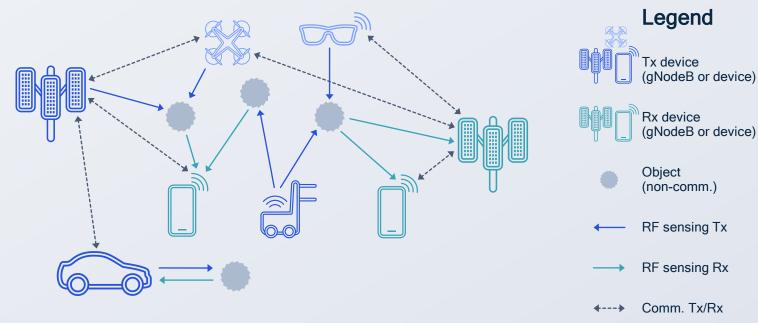
Identify deployment details of the selected use cases

Define channel modelling details, e.g., modelling of sensing targets and background environment (radar cross-section, mobility, clutter/scattering patterns) and spatial consistency

Communications

(eMBB, URLLC, mMTC, and new communication services)

Non-Communications


(precise positioning, RF sensing, and new class of services) Unmanned aerial vehicles (UAVs)

Humans indoors and outdoors

Automotive vehicles

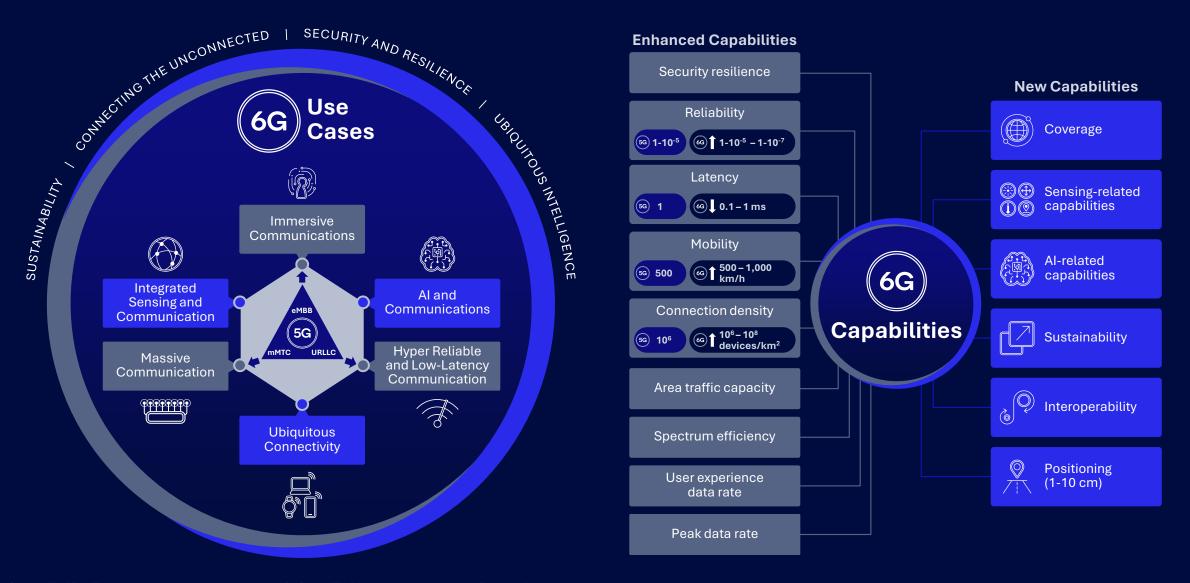
Automated guided vehicles (AGVs)

Objects creating hazards on roads / railways

Multiple sensing modes to be evaluated in this study project, including TRP-TRP bistatic, TRP monostatic, TRP-UE bistatic, UE-TRP bistatic, UE-UE bistatic, UE monostatic

Global Momentum for 6G is growing

We are leading key discussions and working groups to promote early government investments in critical technologies


IMT-2030 defines next-gen mobile system requirements for 2030 and beyond

The standards body responsible for global 6G technology standardization

6G vision from ITU-R — Usage scenarios and capabilities

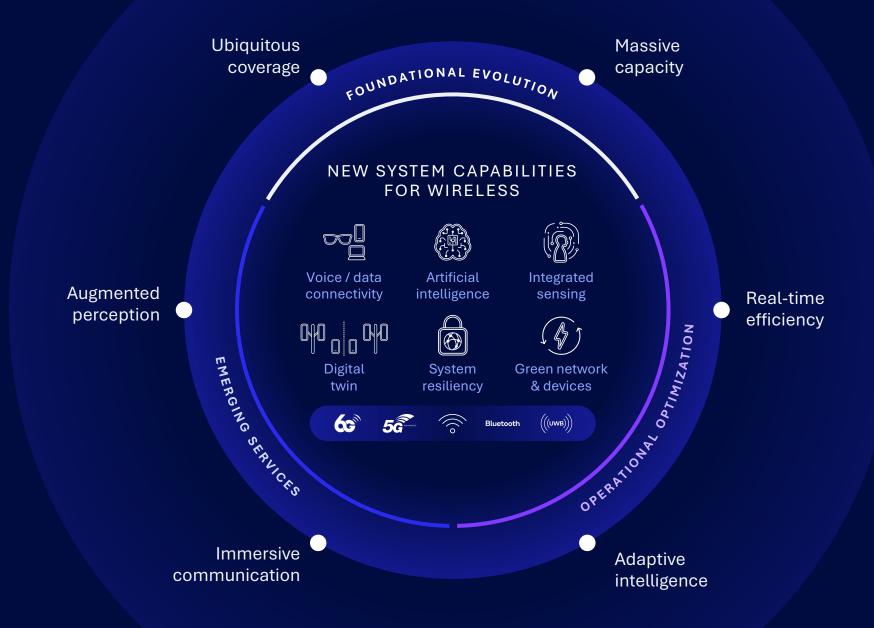
BACK TO THE

WIRELESS FUNDAMENTALS

What do we expect from the next era of wireless connectivity?

Technology exploration for next-generation wireless system design

FOUNDATIONAL EVOLUTION


Continued enhancements to core wireless system design

OPERATIONAL OPTIMIZATION

New tools to maximize wireless system efficiency

EMERGING SERVICES

Scalable, next-generation user experiences

Advanced technology exploration to bring in the next era of wireless connectivity

FOUNDATIONAL EVOLUTION

Ubiquitous coverage

Lower-band spectrum design for 6G

5G non-terrestrial network (NTN) evolution

Massive capacity

New wide-area capacity with 6G Giga-MIMO

Super-QAM in upper midband

Flexible wireless augmented data center

OPERATIONAL OPTIMIZATION

Real-time efficiency

Network slicing with digital twins and gen Al Digital twin hybrid beamforming

Adaptive intelligence

Al-native wireless system design for 6G Wireless Al model LCM

Al-enhanced wireless efficiency (w/ Nokia)

Wireless AI performance verification (w/ R&S)

Qualcomm

Wireless research directions & priorities

Bluetooth

EMERGING SERVICES

Immersive communication

Delivering immersive experiences with distributed spatial compute

Augmented perception

Sensing-enhanced communication

Wireless sensing for aerial drone detection

TECHNOLOGY EXPLORATION AREAS

OUR INNOVATIONS CAN...

\sim	Z
Z	
0	0
_	Ε
ΑT	_
О	\overline{c}
Z	_
\supset	>

OPERATIONAL OPTIMIZATION

Massive capacity

Enabling new wide-bandwidth spectrum

New wide-area capacity with 6G Giga-MIMO

Super-QAM in upper midband

Flexible wireless augmented data center

Address the growing data demand of human and machine communications

Enhancing low band and addressing coverage gaps

Lower-band spectrum design

5G NTN evolution

Provide seamless wireless services everywhere that everyone has come to expect

Real-time efficiency

Advancing network operations with digital twins

Network slicing with digital twins and gen Al

Digital twin for hybrid beamforming

Realize sustained user experience benefits and maximize resource utilization

Adaptive intelligence

Evolving towards an Al-native system design

Al-native wireless system design

Wireless AI model LCM AI-enhanced wireless efficiency (w/ Nokia)

Wireless AI performance verification (w/ R&S)

Derive tangible full-stack benefits from the maturation of wireless AI

Improving experiences with dynamic spatial compute

Delivering immersive experiences with distributed spatial compute

Revolutionize the way we connect to everyone and the world

Integrating wireless sensing for new efficiency and use

Sensing-enhanced communication

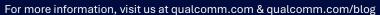
Wireless sensing for aerial drone detection

Enable novel use cases through new and enhanced wireless capabilities

Thank you

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

© Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.


Qualcomm and Snapdragon are trademarks or registered trademarks of Qualcomm Incorporated.

Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated.

