
6G Radio Technology Project Repeater, metasurface, and RIS/IRS WG

(Short Ver.)

September 30, 2025

Construction of White Paper

- Title: Repeater, Metasurface, and RIS/IRS
 - Sec.1: Introduction
 - Sec.2: Use cases and scenarios
 - Sec.3: Technology trend survey
 - Sec.4: Standardization survey
 - Sec.5: Recent activities in Japan
 - Sec.6: Summary

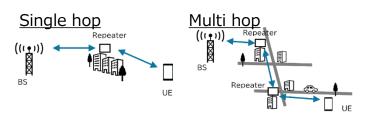
Section II Use cases and scenarios

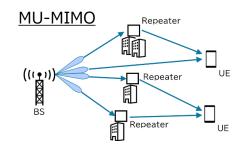
II. Use case and Scenario

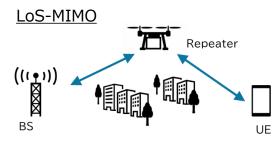
Outline of use cases and scenarios concerning to repeater, metasurfaces, and IRS/RIS

Table of Contents

- Repeater
 - 1. Operating mode
 - 1. Decode and forward
 - 2. Amplify and forward
 - 3. Beamforming
 - Use case
 - 1. Coverage enhancement
 - 2. Spectrum efficiency
 - MIMO, AMC and Beamforming
 - 3. Others
 - Reliability and Energy efficiency

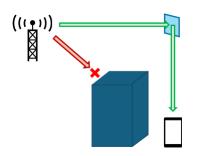

- Metasurface and IRS/RIS
 - 1. Operating mode
 - 1. Passive
 - Reflection, Refraction, etc...
 - 2. Active and Hybrid
 - Transmitting, Receiving, and Transceiver
 - 2. Use case
 - 1. Coverage enhancement
 - 2. Spectrum efficiency
 - MIMO, Beam Manipulation
 - 3. Others
 - Reliability, Physical layer security, Sensing capabilities, Energy efficiency, etc...

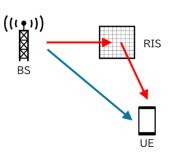

- Operating environment and deployment scenarios
 - 1. Operating environment
 - Indoor, Outdoor and Hybird
 - 2. Deployment scenarios
 - Static and nomadic


Repeater

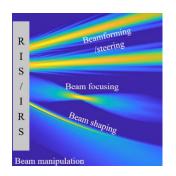
- Operating mode
 - Decode and forward, Amplify and forward, and Beamforming
- Use case
 - Coverage enhancement
 - To mitigate signal attenuation due to obstructions such as buildings, a repeater enables coverage extension
 - Multi hop relaying is supported by incorporating multiple repeaters
 - MIMO
 - Spatial multiplexing is achieved through amplify-and-forward relaying
 - Line-of-sight MIMO (LoS-MIMO) is realized by asymmetrically arranged antenna elements.
 - Others (AMC, beam control, Reliability, and Energy efficiency)

Coverage enhancement

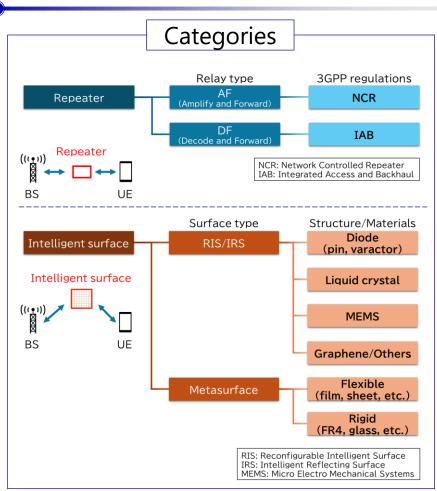



Metasurface and RIS/IRS

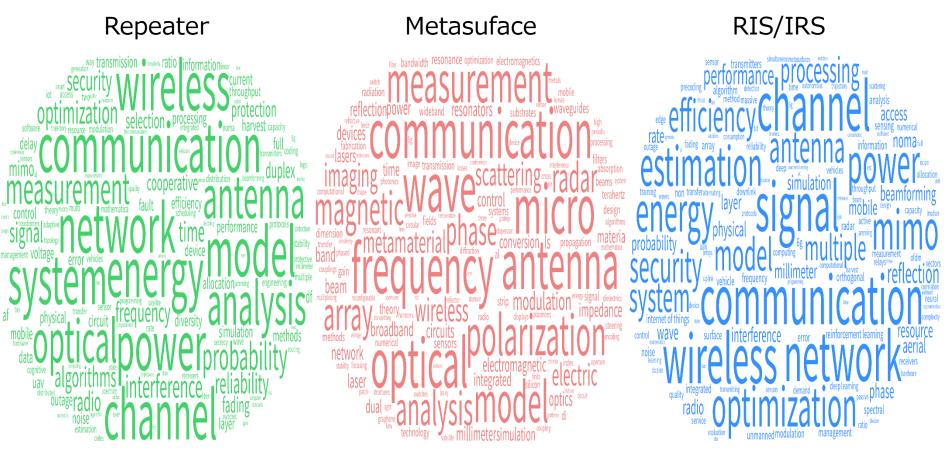
- Operating mode
 - Passive: Reflection mode, Refraction mode (Transmission mode), Absorption mode, and Omni Surface/STAR-RIS
 - Active and hybrid: Transmitting, Receiving, and Tranceiver
- Use case
 - · Coverage enhancement
 - By placing a reflector at a position where both the transmitting and receiving antennas have LOS (Line-of-Sight), a propagation path that avoids attenuation due to the obstacle can be established.
 - MIMO
 - By introducing RIS, multipaths arriving from various angles can be added to the channel, and the number of spatial multiplexing can be increased.
 - Beam Manipulation
 - Beam manipulation is a fundamental capability of RIS technology, enabling precise control over the direction, shape, and focus of electromagnetic waves.


Coverage enhancement

<u>MIMO</u>


Beam Manipulation




Section III Technology trend survey

Technology Trend

Related technical terms for relay technology

Section IV Standardization survey

Summary of Standardization

NCR

- ✓ Discussions have been started from 3GPP Rel-17, and TS began in 3GPP Rel-19 38.806
- ✓ Support FR1/FR2 and split function C/U-Plane. Especially, enhance the function of C-Plane

IAB

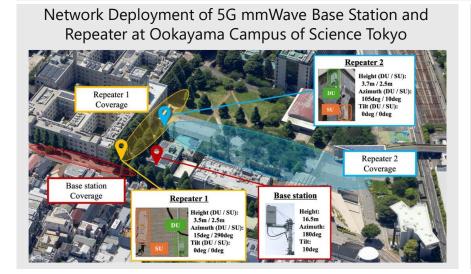
- ✓ Rel-16: basic architecture of IAB is proposed, including core network management
- ✓ Rel-17: functionalities of multi-hop and QoS management have been enhanced
- ✓ Rel-18: integration of AI and automation technologies makes NW more efficient

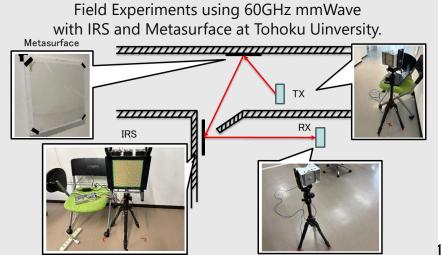
RIS/IRS

- ✓ 3GPP: Some companies proposed including RIS as a SI in 3GPP for Rel-18 in 3GPP Rel.-18 workshop that was held in June 2021. However, the proposal was not approved
- ✓ ETSI: Industry Specification Group (ISG) on Reconfigurable Intelligent Surfaces (RIS) was launched in September 2021. This group published three Group Reports (GRs)
- ✓ ITU-R: ITU-R published Report ITU-R M.2516-0 (11/2022) and Recommendation ITU-R M.2160-0 (11/2023). RIS is introduced as one of technologies to enhance radio interface and performance of IMT systems

Section IV Recent activities in Japan

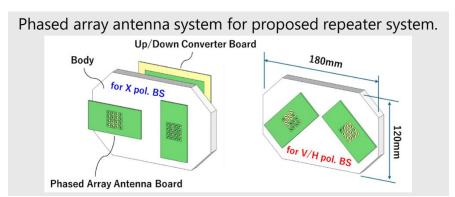
Repeater, metasurface, and RIS/IRS Working Group

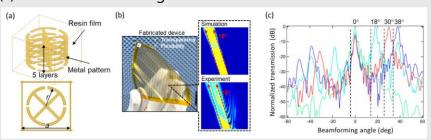

Organization of WG


- Chair: K. Sakaguchi (Science Tokyo), Vice chair: Yuichi Kawamoto (Tohoku Univ.)
- 40 Members

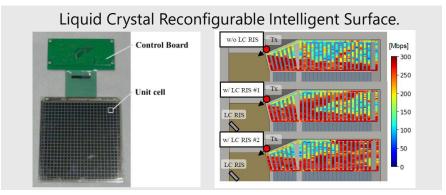
Objectives of WG

- Engage in discussions regarding domestic and international technological trends, standardization activities related to repeater, metasurface, and RIS/IRS as well as use cases and scenarios of practical application.
- Propose directions for repeater, metasurface, and RIS/IRS technologies toward 6G.


Various field experiments using repeater, metasaurface, and RIS/IRS are studied.

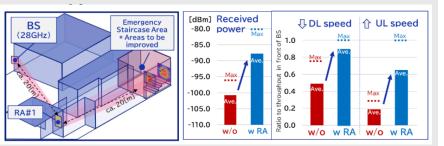

Repeater, metasurface, and RIS/IRS Working Group

Recent activities regarding Repeater, metasurface, and RIS/IRS in Japan.



DKK Co., Ltd.

- (a) Multilayer metamaterial cell for 2π controllability.
- (b) Fabricated gradient metasurface and beamforming results.
- (c) Far-field results for gradient metasurfaces.



NTT Corporation

KDDI Research Inc.

