ooooooooooooooooooooo

Beyond 5G White Paper
6G Radio Technology Project
“Al/ML and Digital Twin Technologies”
[Version 1.0, Overview]

XG Mobile Promotion Forum
Al and Digital Twin Working Group
September 30, 2025



Al and Digital Twin WG

@
* Organization
* Chair: Tomoaki Otsuki (Keio Univ.)
* Vice Chair: Takahiro Yamazaki (NTT), Tetsuya Yamamoto (Panasonic Holdings)

« WG members: 37 members

 Activities
» Researching technology and standardization trends, and creating white papers

 Disseminating information both domestically and internally (e.g., by organizing workshops), and
exchanging opinions with overseas organizations

« Establishing a shared database for Al training
 Sharing a platform for leveraging Al and digital twins

» Examples of outputs
» Beyond 5G white paper
» Shared database for Al training
 Collaborative projects in conjunction with international conferences



Outline of White Paper

@
* Preface

* |. Trends of Al/ML and Digital Twin towards 6G

« |-1. Standardization in 3GPP and O-RAN for Al/ML

* A summary of the standardization trends related to Al/ML within the 3rd Generation Partnership Project (3GPP)
and the Open Radio Access Network (O-RAN) Alliance

* |-2. Introduction of Al and Digital Twin Technologies for 6G

* A brief summary of technological trends in the following technology fields, which are primarily associated with
the content of Chapter Il

* Al for Signal Processing / Air-interface

« Al for RAN

+ Al for Radio Propagation / Digital Twin

* Network Architecture for Al/ML Usage in RAN

* |Il. Recent Activities of Al/ML and Digital Twin in Japan

* An introduction to Japan’s advanced research and development initiatives and achievements related
to the utilization of Al/ML and digital twin for 6G

https://xgmf.jp/wp-content/uploads/2025/05/Beyond-5G-White-Paper-AI-and-Digital-Twin_v1.pdf




Preface

Communication networks are evolving rapidly in the Beyond 5G(B5G)/6G era, and Al/ML technologies will play a
significant role in this evolution.

In the 6G era, digital twin (DT) technology is considered to be very important, in which the real world is reproduced in
cyberspace, and data collected from the real world is used to simulate/emulate beyond the constraints of the real world
using Al, etc., to gain new knowledge, and to feedback to the real world.

Al/ML and DT technologies are expected to be used in various fields to enhance B5G/6G capabilities.

The existing Beyond 5G White Paper Supplementary Volume "Al/ML Technologies” presents Al/ML technologies in
network operation and management, optimization of radio access resource management, Al/ML technologies for
user/application-centric communication.

This white paper targets expands the content on the utilization of Al/ML technologies in the field of wireless technology in
addition to that of mentioned above, and also focuses on the utilization of DT technologies. This white paper summarizes
the latest trends, R&D activities, standardization and status of global technology studies.

This white paper aims to provide a comprehensive overview of the potential, challenges and future direction of Al/ML and
DT technologies, and to provide useful information for future discussions on business creation and solving social issues
through collaboration between industry, academia and government.

This white paper was prepared with the generous support of many people who participated in the Al and Digital Twin WG
of 6G Radio Technology Project, XGMF.



l. Trends of Al/ML and Digital Twin towards 6G

G ®

e Qutline

« |-1. Standardization in 3GPP and O-RAN for Al/ML

o |- 1 1. Standardization in 3GPP

1.1.1. Framework of Al/ML to Air-interface

1.2. CSI Feedback Enhancement

1.3. Beam Management

1.4. Positioning

1.5. Mobility

* |-1.2. Standardization in O-RAN

[-1.2.1. Al/ML Framework

[-1.2.2. Massive MIMO Beamforming Optimization

[-1.2.3. RAN Slice SLA Assurance
[-1.2.4. Energy Saving

-
-I1
o I-1.

I-1.

I-1.

» |-2. Introduction of Al and Digital Twin technologies for 6G
« |-2.1. Al for Signal Processing / Air-interface
 1-2.2. Al for RAN
« |-2.3. Al for Radio Propagation / Digital Twin
 |-2.4. Network Architecture for Al/ML Usage in RAN



1-1.1 Standardization in 3GPP (1/2)

C,
» 3GPP Standardization timeline
2017 2018 2019 2020 2021

2022 2023 2024 2025 2026 2027

| Release 15 ) | _Release 18 ) Release 21 >
| Release 16 ) |_Release 19 ) 6G Work Item
|__Release 17 ) Release 20 >
< 5G ,B 6G StL{dy
4 5G-Advanced ) 6G )
 Application of Al/ML technologies to RAN
= Radio network
|:| < Air- mterface > (EAg
UE AI/ML
- -~ / / \
___________________ f"’ l----N\ —____-”” \\_____________________~
{ Application of Al/ML to air-interface I R Application of Al/ML within RAN !
: Use of Al/ML for communication between UE and BS : : Apply Al/ML to various BS processing :
| - StudyinRel.18, and partially standardized in Rel.19 | | - Study in Rel.17, and partially standardized in Rel.18 !
I - __Further specification in Rel. 20 is under discussion _ I I - Further study and specification in Rel.19 o
\ Further study and specification in Rel.20 is under discussion



1-1.1 Standardization in 3GPP (2/2)

C,
 Use cases (Specified in Rel.19 or to be specified in Rel.20 (under discussion))
Application of Al/ML to air-interface Application of Al/ML within RAN
* Channel state information (CSI) feedback enhancement * Network energy saving
* Time-domain CSI prediction * Load balancing
* Spatial-frequency (+time) domain CSI compression * Mobility optimization
* Beam management * Network slicing
* Spatial domain beam estimation * Optimization of coverage and capacity
* Time domain beam prediction * QoF optimization
* Positioning

* Direction location information estimation

* Intermediate statistical information (e.g., timing and
LOS/NLOS conditions) estimation for positioning
estimation

This white paper provides details on the

application of AI/ML technologies mainly
* Measurement reduction for mobility to air-interface.

* Mobility (e.g., cell selection)

* Handover event prediction




1-1.2 Standardization in O-RAN

G ®
» One of the key innovations driven by O-RAN is the concept of RAN intelligent controller (RIC).
 RIC: Role in automatic optimization of parameter design and operation
* Integration of Al/ML in O-RAN with RIC for intelligent RAN

* Improvement of communication performance, optimization of resource allocation, and improvement
of user experience quality, etc.

» Multiple scenarios considering the arrangement on combination of training, model management and
inference, etc.

» Use cases

* Massive MIMO beamforming optimization

* Application of Al/ML technologies to advanced network management techniques such as beam shaping, beam-based load
balancing, optimized beam mobility, and adaptive cell coverage areas

* RAN slice SLA assurance

* Application of Al/ML technologies to the network control function by RIC to efficiency control network slides and guarantee
requirements such as quality and low latency, etc.

* Energy saving
* Application of Al/ML technologies to cell and RF channel ON/OFF and sleep control

This white paper provides details on the AI/ML framework (e.g., deployment scenarios) and each use case in O-RAN.




I-2. Introduction of Al and Digital Twin Technologies for 6G (1/4)
G @

» 1-2.1: Al for Signal Processing / Air Interface

* Challenges in Beyond 5G
* The increasing complexity of wireless communication systems makes it difficult to control a large number of interdependent
parameters using conventional methods
* Expectations for Al/ML technologies
* Optimization of wireless signal processing and air-interfaces by solving complex non-linear problems and analyzing huge
amount of data

+ Serving as the ley technology to achieve dynamic and highly efficient optimization, resulting in becoming a central
component of Beyond 5G systems
+ Application areas of Al/ML technologies
 Physical-layer signal processing (channel coding, channel estimation, beamforming, transmit power control, etc.)

+ Replacing conventional wireless signal processing with Al/ML models such as neural networks is expected to reduce the
computational complexity and improve accuracy

« Al-native air-interface

* Representing an evolution from traditional, fixed air interface protocols, toward new communication methods that
dynamically adapt to the constraints and variability of the wireless environment

* Application to high-frequency areas such as millimeter-wave and terahertz bands

* Non-linear compensation technigues using Al/ML for complex nonlinear distortions in power amplifiers that difficult to deal
with using conventional polynomial models

e Technologies that compensate for multiple RF impairments (power amplifiers, IQ imbalance, etc.) by utilizing Al/ML

+ Performance indicators considering both communication and Al/ML perspective, integrated system design 9



I-2. Introduction of Al and Digital Twin Technologies for 6G (2/4)
G @

« 1-2.2: Al for RAN
 Expectations for Al/ML technologies

» Al/ML technologies are expected to be used for operations, administration and maintenance (OAM) and
dynamic control of RAN.

» Al/ML technologies are expected to reduce operation costs of RAN, to improve quality of communication of
RAN. Following 5G system, it will also become important for Beyond 5G and 6G systems.

 Application areas of Al/ML technologies
+ OAM of RAN

* Instead of a manual parameter configuration, an automatic parameter configuration by Al/ML technologies is proposed
for reducing human operation resources and human errors.

* Dynamic control of RAN

+ Dynamic traffic offloading, resource allocation and power control by Al/ML technologies are proposed to improve quality
of communication and power efficiency.

* Application-aware RAN control
* With O-RAN RIC standardized in O-RAN, application-based resource allocation will be enabled.

» System failure detection

*  With Al/ML, the threshold for failure detection can be dynamically configured, and it makes the probability of failure
detection higher. 10




I-2. Introduction of Al and Digital Twin Technologies for 6G (3/4)
G @
» 1-2.3: Al for Radio Propagation / Digital Twin

 Expectations for Al/ML technologies

» AI/ML technologies are expected to evolve radio propagation and radio simulation in digital virtual
environments such as digital twin.

* AI/MLis a promising approach to make close radio propagation model to the real one. It should accelerate the
development of digital twin and cyber physical system.

 Application areas of Al/ML technologies
* Radio propagation

» Al/ML technologies can be applied for channel parameter estimation, channel modelling, channel prediction and LOS /
NLOS identification.

» Al/ML technologies can make ML models with multimodal values such as measured received signal strength indicator
(RSSI), geographical information, camera images, states of UEs and etc.

» Using this ML model|, it is expected to support more flexible radio propagation situations and scenarios for Beyond 5G
and 6G.

* Radio simulation in digital twin

* Many Al/ML approaches have been investigated to implement more realistic and cost-effective radio simulation.

* Al/ML technologies can reduce computational cost while maintaining simulation accuracies.

11
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I-2. Introduction of Al and Digital Twin Technologies for 6G (4/4)

* 1-2.4: Network Architecture for Al/ML Usage in RAN
* Challenges in Beyond 5G

» Conventionally, Al/ML application functions are placed in core network or cloud infrastructure. However, it
increases the latency due to Al/ML processing is carried out in a location farther away than the cellular area
provided by the RAN.

 Application areas of Al/ML technologies

* Placing Al/ML application functions to RAN side, such as MEC or computing infrastructure for vRAN, is
proposed.

+ Additionally, for 6G, a network architecture which distributes Al/ML application functions to core network, RAN,
user devices and all of the network functions is proposed.

+ It will enable an adaptive computing resource allocation for Al/ML in end-to-end communications.

+ With this architecture, more Al/ML applications will be effectively utilized in 6G systems.

®

12



Il. Recent Activities of Al/ML and Digital Twin in Japan (1/2)

@ O
This section introduces leading-edge R&D efforts on AI/ML and Digital Twin for Beyond 5G in Japan.

Al for signal processing / air-interface

Contributor (Affiliation of first author) | Contents Title
lI-1 | Nokia Scalable Al/ML for Radio Cellular Access
[I-2 | Panasonic Holdings Study on Training Collaboration at UE- / NW-side for CSI Compression with Two-sided Al/ML Model
-3 | NTT Proof-of-concept for Al-native Air Interface toward 6G
[I-4 | KDDI Research Neural Network-based Digital Pre-distortion for Wideband Power Amplifiers using DeepShift
-5 [ NTT Al Calibration Network under Hardware Limitations
[I-6 | Huawei Technologies Japan Performance Requirements and Evaluation Methodology for Al and Communication in 6G
Al/ML for RAN

Contributor (Affiliation of first author) | Contents Title

-7 KDDI Research Study on AP Clustering with Deep Reinforcement Learning for Cell-Free Massive MIMO
-8 Sharp Cross-layer Access Control Techniques using Al
-9 NEC Al-based Application-aware RAN Optimization
[I-10 | KDDI Research AlOps for Autonomous Network
l1-11 | NEC Logic-oriented Generative Al Technology for Autonomous Networks
[I-12 | Huawei Technologies Japan In-Network Learning for Distributed RAN Al, ~Distributed LLMs via Latent Structure Distillation~

T
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Il. Recent Activities of Al/ML and Digital Twin in Japan (2/2)

This section introduces leading-edge R&D efforts on AI/ML and Digital Twin for Beyond 5G in Japan.

Al/ML for radio propagation and / digital twin

Contributor (Affiliation of first author)

Contents Title

I1-13 | NTT Throughput Prediction Technology for 28 GHz Channels using Physical Space Information
II-14 | Tokyo Denki University Al/ML-based Radio Propagation Prediction Technology

II-15 | KDDI Research Al-Based Radio Propagation Modeling for Wireless Emulator

I1-16 | NTT DOCOMO 6G Simulator Utilizing Future Prediction Control Technology Based on Al/ML

I1-17 | NTT DOCOMO Optimization of 6G Radio Access Using Digital Twin

[1-18 | Osaka University Digital-Twin for and by Beyond 5G

Network architecture for Al/ML usage in RAN

Contributor (Affiliation of first author)

Contents Title

[-19

Huawei Technologies Japan

Task-Oriented 6G Native-Al Network Architecture

14




-1 Scalable Al/ML for Radio Cellular Access
C,

* Abstract;

» Wireless networks are expected to move towards self-sustaining networks in 5G-
Advanced and in 6G, where Artificial Intelligence (Al) and Machine Learning (ML) play a
critical role in maintaining high performance in dynamically changing environment.
Al/ML solutions that operate separately at the device or network side, or jointly on both
will emerge. Similarly, lifecycle management procedures will be needed to enable
interoperable automation in the radio, providing a framework with the necessary tools
for deploying and operating ML solutions in radio at scale.

15



@ Study on training collaboration at UE-side / NW-side for CSI compression
® with two-sided Al/ML Model

®

* Al/ML-based CSI compression CSI report Reconstructed
. Compressed (Compressed CSI) ((( 1) csI
+ Two-sided model: Inference is executed on both UE-side and ’ ICSI A % ’
. Spatial
NW-side domain
- Issue: How to coordinate training between UE-side and UE-side AI/ML model (encoder) ussldeplE R Sl(Eeeodeh)
N%{-side? . . . e
« Methods to alleviate the issue related to inter-vendor training T

Decoder
(trainable)

H E di Decod
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- Direction A (;:e,,ls@ o g
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» UE-side develops actual encoder against the nominal AI/ML model (reference model A T (step 4 (UE-side
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» Potential issue: Performance impact due to NW / UE data distribution mismatch with ) <
respect to UE-specific conditions A -----------------------
- Evaluation: The impact of the dataset distribution mismatch regarding UE-side Encoder and decoder generated in Step 4 and Step 1 - . .
antenna configuration between NW-side training (Dataset A) and UE-side are used on UE-side and NW-side, respectively. Training for Direction A

training (Dataset B) is small o . .
Training for Direction C Decoder
(trainable) (trainable)

» Direction C | _ @

» Reference model (structure + parameters) is standardized.

Dataset A
(Vin)

<

v

* The actual implementation of the AI/ML model on UE-side / NW-side is developed
against with a reference model. Training of reference model

» Potential issue: Performance impact due to mismatch between the distribution of the
dataset used for reference model training, UE-side / NW-side data distribution

« Evaluation: Performance improvements can be observed when UE-side or NW- Training ) =] UED] Tramlng@
side retrains using datasets that match the inference environment. U M 2 - (s

________________________________________

In terms of performance improvement, Direction A > Direction C, and then {D ’
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@ Proof-of-concept for Al-native Air Interface toward 6G

@®
O Al-native air interface (Al-Al)

» Al/ML is used to optimize the air interface end-to-end to
serve an application with the data it needs in an optimal way.

O Deep Learning- Based Pilotless Transmission

» Transmit constellations and the receiver that handles
channel estimation, equalization, and demodulation are
jointly learned by data based on channel model.

» It can transmit data using all available resources, without
having to transmit pilot signals, which is expected to

improve throuahput.
Data transmission without pilots (real hardware)

Bit !
Bits VF Y estimates !
LDPC . LDPC '
4{ encoder H OFDM transmitter }'Y -z Y FFT DeepRx “ s
! ;

DeepTx (learned
constellation)

e / End-to-end training (simulation) [/
(Learned constellation ) DeepRx ! h
Received symbols Recovered bits (LLRs)
T CNN model
AR . & &
" a | input \ , \ , output
N\ * peal J time — J

®

O Proof-of-concept for AI-Al

» To evaluate the performance in a real environment,
the throughput improvement by the proposed scheme
was measured in an indoor environment with obstacles.

Deep Learning- Based Pilotless Transmission
improves throughput on any measurement route

EWaII/Door(Ironi Locker (Iron) 20 F
! 1 _
1 [ J Y S X
Lo 5 15 F
: ‘ Shelf (Iron) ‘ shelf | &
'3 (iron)| S @©
13 2 2 £10
= 5
6 | 52
; M Shelf (Iron) ‘ illay g £ 5
3 s FE

Rx® ° & 0

Y

o Table etc. | o 2w 1 2 3 4 5

Measurement route number

» In addition, experiments using a channel emulator show
that the proposed scheme significantly improves
throughput in a high-speed mobile environments.

Simulation parameters for training Specifications of the PoC system

Channel model 3GPP TDL-A, B, C Center frequency 4.8 GHz

Velocity 0~200 km/h Subcarrier spacing 30 kHz

Delay spread 10~500 ns Bandwidth 9 MHz
SNR 0-20 dB MCS index 10 !

(16QAM)



C,

Challenges

» In wideband communications at millimeter-wave
and terahertz bands, nonlinear distortion in
power amplifiers (PAs) poses a serious problem.

« While neural network (NN)-based Digital Pre-
distortion (DPD) shows excellent performance, it
requires numerous floating-point multiplications,
resulting in high hardware implementation costs.

« Proposed Method

DPD using DeepShift: Replacing multiplication
operations in NNs with bitwise-shift and sign
operations to reduce hardware implementation costs.

Amplifiers using DeepShift

AN v NG
o T
—x —0.24 @ —_2 %i)
o)
/Q?’ LJ_Q RF transmitter  §
/+ / including THz

Standard DeepShift

Overview of DeepShift Experimental setup using THz PA

Neural Network-based Digital Pre-distortion for Wideband Power

« Evaluation Results using THz PA

Achieved compensation performance equivalent to
conventional NNs without any multiplications.

operation counts
. .. __| Bitwise
Model t
oceTYPE  leym [%]""“'.‘"""ca shift& um
sign
withoutoPD JEEPLE [ | |
RVTDNN 2992 20400 0 20400 200

RVTDNN (DeepShift) LR 0 20400 20400 200
BT 2074 100400 0 100400 600
DNN (Deepshift) [EIEE! 0 100400 100400 600

EVM:55.25 % EVM:20.93 %

2

-1.0 -0.5 0.0 05 10

-20 -15 -10 =05 00 05 10 15 20

Real

Without DPD DNN (DeepShift)

These research results were obtained from the commissioned research (No.00401) by National Institute of Information and Communications Technology (NICT) ,

lanan



@ Al Calibration Network under Hardware Limitations

» Al processing needs to be optimized according to hardware resource and limitation (e.g., RF characteristics, ®
processor capability, or power consumption) available for DSP

v Calibration performance for hardware impairments
v" Processor resource allocation for Al processing
* Al device calibration

v" In Al device calibration, the performance/cost of Al processing for physical layer processing can be dynamically
optimized in accordance with limitation of available hardware/resource and required KPIs (e.g., throughput, cost, or
power consumption) from applications

* Al calibration network

v The Al calibration network, which applies the concept of Al device calibration to coordination across the RAN,
optimizes Al processing resource allocation across the RAN, including adaptive control of physical layer processing

RS (Transmitter) (Receiver)
/ [ Processor | [ Processor |
. Modulation Calibration RF circuit RF circuit Calibration | |Demodulation E
. circuit circuit circuit circuit
BS/TRP = T ' x x T :
....... '.-----------T---:....E Optimization .....E...T..‘.........‘.....
Hardware and . .
> > resource info. .
=] <2 =] <= =
TRP UE AI device calibration

RS
Hardware, resource, Optimization ‘
and environment info. P

Environment Hardware
AI calibration network I\AM’ > Interference  + ;mpairment  —> ’\AMI
1.

Channel fading




n-¢ Performance Requirements and Evaluation Mythology for Al and

Communication in 6G

C,
Abstract:

* This paper describes the "Al and
Communication" scenario and the typical Al
services in 6G.

« It also introduces general principles for
performance definition, and detailed
performance indicators.

 Then, this provides an evaluation methodology
for the proposed performance indicators,
along with an example.

Sec 2.2: Typical Services in the "Al and
Communication” Scenario

A Model
Training Service
Example

Sec 3.3: Proposed Performance
Requirements for AI & 6G Communication

« Al service functionality requirements

« Al service accuracy (or Al service quality)
« Al service latency

« Al service density

Sec 4.2: Evaluation Example

(<<A>>)

Input —% — Transmitter —— Channel — Receiver ’— m — Result

Distributed Al inference service example

Sec: 5 Conclusion

» This illustrated the motivations, typical Al
services, and performance requirements of
the "Al and Communication” usage
scenario.

20



n-7 | Study on AP Clustering with Deep Reinforcement Learning for

Cell-Free Massive MIMO
G, ®
 The challenge lies in selecting the optimal AP cluster (antenna selection for distributed MIMO)
considering the vast combinations of APs and UEs, as well as the radio conditions and quality
requirements.

« By applying reinforcement learning, it is possible to achieve the selection of the minimal necessary AP
cluster that satisfies the quality requirements of UEs while minimizing signal processing load.

« Dynamic and real-time control can be enabled by distributing small models for each UE and performing
parallel inference.

Learne | Sampled ey
B [~ L,
+ Cell-Free Massive MIMO (CF-mMIMO): A technology that

Actor Actor Actor
eliminates inter-cell interference by performing multi-user SOV X3 X3 SHSX3
MIMO processing on signals from distributed access points = smesT o StatesT o StatesT ~"
(APs) collectively.

Reward Reward Reward|

« AP Cluster: a combination of access points or antennas
that transmit and receive data for each UE.

8

These research results were obtained from the research (JPJ012368C00401) commissioned by National Institute of Information and Communications Technology (NICT), 21
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Cross-layer Access Control Techniques using Al

-Objective

The demand for large-capacity, latency sensitive applications such as ultra-
high-definition video transmission is increasing in wireless communication
systems. In high-demand applications such as ultra-high-definition video
transmission, there is a problem that increasing the capacity of wireless
communication does not necessarily lead directly to the realization of such
applications.

*Approach
We have studied the cross-layer access control techniques, which improves
video throughput based on whether the requirements for ultra-high-
definition video are satisfied, rather than conventionally called throughput,
which is calculated from correctly received bits

Utilizing Al (Reinforcement Learning) to efficiently connect the diverse
application requirements with the available frequency resources.

Countable for conventional bit throughput
A

Required Application
data(e.g., Video data)

Interference

P Time

Transmission packet

Not countable for video throughput(Although three packets are

required for the successful transmission of video, if the

transmission of the final packet fails, the first two packets will

not be counted toward the throughput.

Fig. 1:Relation between the radio and application layer throughput

®

Utilization of video throughput (Optimization of frequency
band_selection)

/ Agent f Action (Upldat_e Environment
| requency selection [
. . <
1 . ;g .., !
! ﬂ.l.n c‘%‘ W 4 !
: State Reward, Next state “ai¥” !
\(Frequency selection) . ___________

Video deliver server } .

Video transmitter Selecting the optimal frequency
band through deep
reinforcement learning, with the
achievable video throughput
serving as the reward.

+ Space: 260 m? (20 mx13 m)
« Height : 4m

nt ource

: Test environment

Fig. 2: Experimental system model

The field test conducted using
the prototype demonstrated
the potential for improving
application capacity

Algorithm
— RL
random

DOU 2 4 6 8

Number of users

Fig. 4 : Experimental result

22




-9 | Al-based Application-aware RAN Optimization

G,

* Abstract;

* It has become increasingly important for industries to promote digital transformation
by utilizing 5G/6G, Internet of Things (IoT), and Artificial Intelligence (Al) to realize a
highly productive and prosperous society. In addition to conventional policies of
improving the average Quality of Service (QoS) at each mobile coverage area, there is
an increasing need to strengthen policies that precisely adhere to QoS requirements
per User Equipment (UE) and in real-time to enable the stable use of applications at
high-performance levels, e.g., work speed or productivity. The Open Radio Access
Network (Open RAN), specifically standardized by the O-RAN Alliance (O-RAN), offers
significant potential to enable flexible resource management to address diverse QoS
requirements. This article introduces an application-aware RAN optimization method
that can support such policies based on O-RAN architecture.

23



1-10 | AlOps for Autonomous Network
® @
» Abstract:

* This report provides an overview of Autonomous Networks expected to be realized in
Beyond 5G. Furthermore, this report describes the details of network operation by Al,
which is a necessary element of the Autonomous Network, and especially summarizes

the strategy for managing network failures, and provides the overall framework
required for future network operation.

24



I-11 ' | ogic-oriented Generative Al Technology for Autonomous Networks
C,

* Abstract;

» Autonomous network operation technology based on intent has been attracting
attention toward advanced automation of network operation. However, the realization
of intent translation, which is the key to this technology, faces the challenge of
achieving both flexibility and faithfulness. In this paper, we propose a logic-oriented
generative Al for intent translation, which is a logical search engine enhanced by Al/ML
technology. This paper presents the position of our proposal with respect to related
techniques, and then briefly outlines its method.

25



Abstract:

* This proposes a distributed learning on In-

Network Learning (INL) for inference over RANSs.

* This algorithm is particularly suitable for both
multimodal and heterogeneous data settings.

* It also examines Horizontal and Vertical FL and
Horizontal and Vertical Split Learning (SL) under

the accuracy (Gain) under given bandwidth

requirements.

Multlmodal data

x4§

2 -»|
New mobile

X5
g_’g -

Mobile
edge device

8 - GO Global

goal

Distributed inference over RAN

In-Network Learning for Distributed RAN Al

p ~Distributed LLMs via Latent Structure Distillation~

®

Sec 2: In-Network Leaning Key Features
* Network Feature Fusion & Feature Redundancy Removal
« Feature Extraction Depends on Network Channel Quality

& Satellite Decoders

(b) INL

Sec 3: Performance Gain

Accuracy

o—eo ®-®

N g

&

-
i
N

0

20

40

Data transmitted (GB

60

)

80

100

120

Accuracy vs. bandwidth cost for Exp-1

Sec 4:LLM deployment
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Throughput Prediction Technology for 28 GHz Channels using Physical Space
o Information

=== Robot-A (UE) route (6.0.4.5)
W [ssues with 28GHz channels used in 5GNR == Robot-B route (50,30) Robot-A
» Since 28GHz channels have strong direct wave radio propagation, link yim] UE
quality is easjly degraded by phy§ical obstruc.tions. . -T—»x[m] Wireless “"
— Goal: predict and prevent quality degradation caused by obstructions communication y %
in advance o%% RoborBZ
*
.
. . . . . ‘
- Propoged method: Throughput prediction using physical space "¢ 50.25)
information R :
(~7.3,-3.0) ¢ (6.0, —2.5)
+ Target scenario: Indoor scenario, two people moving around in a room, AA_)‘
one has a UE which always transmits packets with 5GNR 28GHz. Base station R
Depending on the relative positions of two people, the UE - L
communications may be blocked. Autonomous mobility
+ Experimental environment: Instead of two people, we made two Experimental environment humanoid robot
autonomous mobility humanoid robots (A, B) moving around in the 200 = ' : — = - o= = =
room, and measured physical space information of robots (position, 180l 0 N B A |
direction, speed) and uplink throughput of UE with 5GNR 28GHz. o | L i
& 160 4 :
* For learning, using DNN(LSTM). —§ ::; L,
Input: past one-second physical space information of the robots and % 140 i '\'-:
uplink throughput of the UE. 2 120l “, ]
Output: one-second-ahead uplink throughput of the UE ED Nl :
100}
M Evaluation ?_:9 "
) : _— . . &= sof
» Confirmed improved throughput prediction accuracy by using physical — Measured values
space information from two robots instead of just one which has UE. 60 e
— Not only UE but also physical space information of obstructions is 40 . . . . .
useful for throughput prediction 10 20 30 40 50 60
Time [g]

Comparison about measured throughput and predicted throughput 27



I-14 ' Al/ML-based Radio Propagation Prediction Technology
@ )

» Abstract:

* Recently, advancement of Al/ML has been remarkable, and many applied research
studies are attracting attention now. This is also true in the field of radio propagation.
This paper introduces its application to radio propagation prediction, which is currently
under intensive study.
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Al-Based Radio Propagation Modeling for Wireless Emulator

®

B Wireless Emulator

» Aims to accelerate and reducing the cost of evaluation and verification processes of wireless systems.

* Reproduces the behavior of wireless communication systems using large-scale virtual wireless devices and actual

wireless devices connected via physical interfaces.

* Requires models that reproduce site-specific radio propagations in real environments.
W Site-Specific Path Loss Model Based on ResNet

* We express site-specific environmental information, which was not considered in traditional statistical models.

* We designed an architecture suitable for path loss prediction based on Residual Networks (ResNet), which are widely
used in image recognition.

» Evaluation results using actual measurement data in Yokohama show a significant improvement in accuracy compared

to the conventional model (UMa).

Input features

(a) Relative Height Map
around Tx

(b) Relative Height Map
around Rx

direction

~ ofTx

(c) 3D distance map
between Tx and Rx

Path Loss Model based on ResNet

ResBlock
ResBlock
ResBlock

>

ResBlock

ResBlock

ResBlock

Flatten
Fully Connected

Fully Connected

Fully Connected

ResBlock

Convolution

BatchMNarm

RelU

[ convalution |

Shortcut
Connection

~\

Predicted
L,

Path Loss

O
Evaluation Results

Frequency RMSE [dB]

3GPP Urban ResNet

Macro (UMa) (proposed)

922 MHz 8.8 3.8

2462 MHz 7.4 4.3
4850 MHz 8.2 2.7
28.35 GHz 17.6 3.5
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11-16
G,
» 6G simulator has been developed to evaluate 6G systems
v'It assesses and visualizes technologies for 6G as a complete system
v'Sub-THz band, mid-band, and NRNT have been incorporated
v'Evaluations are conducted in a virtual outdoor urban environment
» Al/ML algorithms have been integrated into the 6G simulator

v Future prediction control to avoid the impact of unexpected obstructions

6G Simulator Utilizing Future Prediction Control Technology Based on Al/ML
@

v'Use cases for AI |n W|reless communication systems are shown
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The Improvement of Throughput by Al Prediction 30

Scenario for Future Prediction using Al/ML



Optimization of 6G Radio Access Using Digital Twin
® @

, Ex. of Conference Rooms
» Advanced Cyber-Physical Systems (CPS) :

v'Al recreates the real world in cyber-space

v Future predictions and new insights gained through emulation
are fed back in the real world

» Development of 6G simulator aimed at evaluating system
performance in real environments

e ty
& i
4 e iy .
\\ HEN

v Through ray tracing based on propagation characteristics derivethroughput
from real environment models using point cloud data (Ex. of 4.7 GHz)

v'For both Evaluation and Visualization purposes

CybG'I' I

Propagation .‘ Transmlssmn Active .
Sensing Inf. etc. Emulation Emulation Contro Ig. t_o r_Syf_tem
[Large Capacity, ptimization

[High Reliability,
Low Latency] J Low Latency]

Physical
[ 6G System

[Wireless Access Control, Sensing]

6G system utilizing dynamic control through CPS Map of Received Power Level = .o, 2 2 ° 31



Digital-Twin for and by Beyond 5G
C

* Integrate “Real world digital twin"” (Digital-Twin by B5G), which will be further evolved by B5G, and
“Network digital twin” (Digital-Twin for B5G), which will further evolve B5G, to realize a digital twin

infrastructure for their co-evolution.

Occupancy of space
Probability stock yard

Identity of object
Probability

Hospital, City,
nursing home streets
API (i)robabillstic information)

- T\*I v v

Dlgltal -Twin of space  yior,

Digital Twin A

‘ Factory

loT GIW

Neighbor Neighbor Neighbor
1 2 3

Camera LIDAR Robot AR glass

A) Probabilistic framework for integrating diverse real-world
data as a digital twin

&

e

:
presentation - g |

®

Digital Twin Orchestrator

Registry Digital Twin B
1
Federation presentation

) -{ Analysis
= Object mgmt
an 1\{ Data mgmt

Brokering

loT G/W

Synchronization

B) Orchestrate d|g|ta| twins from d|verse domams

Use case (2)

Use case (1)
Digital-Twin for Human-Robot Cooperation

Digital-Twin for Radio Communication Environment

Use case (3)
Digital-Twin for Smart Sustainable Mobility

S: Original evaluation

[exp (85)]}  function

B Risk parameter

og {E [ex

Safe coexistence of humans and
robots through risk-sensitive
probabilistic robot control

Dynamic beamforming optimization
for moving robots using probabilistic
Radio Environment Map

”ﬁw [y ——

S Q@ )
u L
G ‘b, "J
Ovchestrator
] -
u\}( L4555 .

Orchestration of Smart Environment/Smart
Driving/Smart Mobility for Sustainable Mobility
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II-19 | Task-Oriented 6G Native-Al Network Architecture
® )
» Abstract:

» The vision for 6G networks is to offer pervasive intelligence and internet of intelligence,
in which the networks natively support artificial intelligence (Al), empower smart
applications and scenarios in various fields, and create a "ubiquitous-intelligence" world.
In this vision, the traditional session-oriented architecture cannot achieve flexible per-
user customization, ultimate performance, security and reliability required by future Al
services. In addition, users' requirements for personalized Al services may become a
key feature in the near future. By integrating Al in the network, the network Al has more
advantages than cloud/MEC Al, such as better QoS assurance, lower latency, less
transmission and computing overhead, and stronger security and privacy. Therefore,
this article proposes the task-oriented native-Al network architecture (TONA), to
natively support the network Al. By introducing task control and quality of Al services
(QoAIS) assurance mechanisms at the control layer of 6G.
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