

6G Radio Technology Project Advanced MIMO WG — WG Activities and White Paper —

September 30, 2025 Advanced MIMO Working Group

Introduction of Advanced MIMO Working Group

Advanced MIMO Working Group (A-MIMO WG)

- Chair: Kazushi Muraoka (NEC)
- Vice chairs: Daisei Uchida (NTT), Shunsuke Kamiwatari (KDDI Research)
- 40 Members (As of 2025/09)
 - Industry: KDDI, NTT, NTT DOCOMO, Softbank, NEC, Sharp, Ericsson Japan, Panasonic, KYOCERA, Sony, Huawei Japan, NICT, Keysight, DNP,
 - Academia: Hokkaido Univ., Univ. of Electro-Communications, Tokyo Univ. of Science, Tohoku Univ., Fukuoka Univ., Tokyo Univ., Science Tokyo

Objectives of WG

- Engage in discussions regarding domestic and international technological trends, standardization activities related to Advanced MIMO technologies as well as use cases and scenarios of practical application
- Propose directions for the Advanced MIMO technologies.

Recent Activities

- Monthly meeting including discussion on Advanced MIMO related topics
- White Paper

Outlines

- Introduction of White Paper
 - Preface
 - Section I: Evolution and Challenges of Advanced MIMO Towards 6G
 - Section II: Recent Activities of Advanced MIMO Technologies in Japan

Preface

Expectation and requirement for 6G

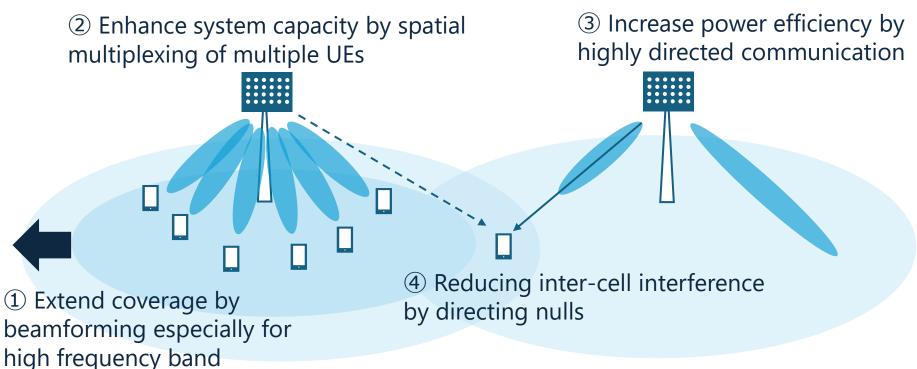
- Foundational infrastructure to build CPS and digital twins in the AI era
- Cost-effective and sustainable networks
- Efficient use each frequency bands (Sub6 GHz, mmWave, FR3)

MIMO Technology Evolution

- From single-user MIMO to multi-user MIMO
- From MIMO to Massive MIMO
- From single TRP to multi TRPs (distributed MIMO: D-MIMO)

Toward Advanced MIMO

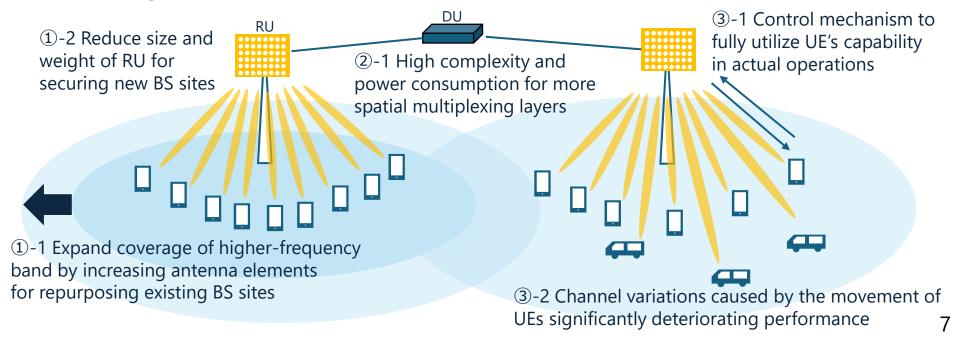
- Involving more BSs and UEs, both massive MIMO and distributed MIMO technologies will evolve and be integrated. Ultimately, concept of MIMO expands to optimize spatial transmission for entire systems
- Evolved MIMO technologies from traditional massive MIMO and multi-TRP are broadly defined as Advanced MIMO technologies in this white paper.


Features of Japanese R&D in this area

Many researches and experiments for D-MIMO in broad rage of frequency range (sub6/mmWave/SubTHz)

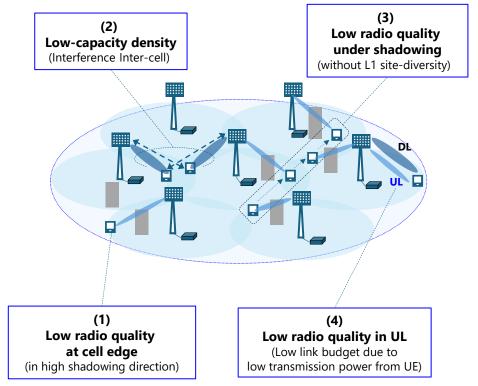
Section I Evolution and Challenges of Advanced MIMO Towards 6G

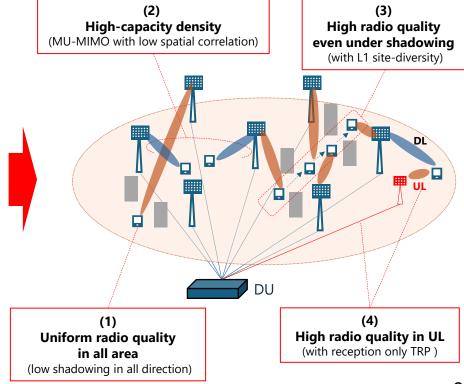
I. Evolution and Challenges of Advanced MIMO Towards 6G I-1. Current Status and Challenges of Massive MIMO


Advantages of Massive MIMO

I. Evolution and Challenges of Advanced MIMO Towards 6G I-1. Current Status and Challenges of Massive MIMO

Challenges toward Advanced Massive MIMO


- ① Challenges related to BS deployment and frequency
- ② Challenges concerning equipment for BSs and Ues
- ③ Challenges in transmission methods


I. Evolution and Challenges of Advanced MIMO Towards 6G I-1. Current Status and Challenges of Distributed MIMO

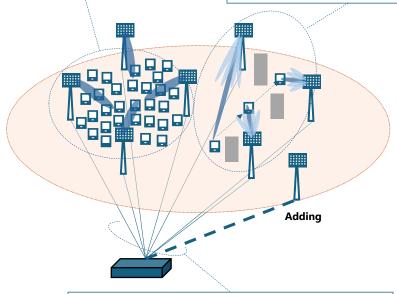
Advantages of Distributed MIMO

Cellular Configurtaion

Distributed MIMO Configurtation

I. Evolution and Challenges of Advanced MIMO Towards 6G I-1. Current Status and Challenges of Massive MIMO

Challenges of Distributed MIMO


The number of spatial resource increase:

- Schedulers become more complex.
- Reference signals needs flexibility to increase.

Using high-frequency band:


- Optimum selection for combination of TRP/beam
- Proactive selection of TRP under shadowing

How do we evolve from a cellular configuration to a distributed MIMO configuration?

Adding TRP:

- Deployment TRP cost need to be lower
- Fronthaul capacity need to be flexibly expanded

Configuring distributed MIMO with existence TRP

Configuring distributed MIMO with new TRP

I. Evolution and Challenges of Advanced MIMO Towards 6G I-3. Recent Activities related Advanced MIMO in 3GPP

UL Layer/SRS $(4\rightarrow 8)$ (Rel.18)

UL-only TRP, 3Tx UE (Rel.19)

STxMP (Rel.18)

A-MIMO in 5G-Advanced

Realization of D-MIMO DL CJT (Rel.18) Calibration between TRPs (Rel.19) **Enhancement of mMIMO** DMRS (12→24) (Rel.18) CSI-RS (32→128) (Rel.19) **Enhancement of Uplink**

Stable communication in FR2

- UE-initiated/Event-driven beam management (Rel.19)
- AI-based beam management (Rel.19)

Towards 6G

AI/ML-native NW

- AI-based function
- RS enhancement

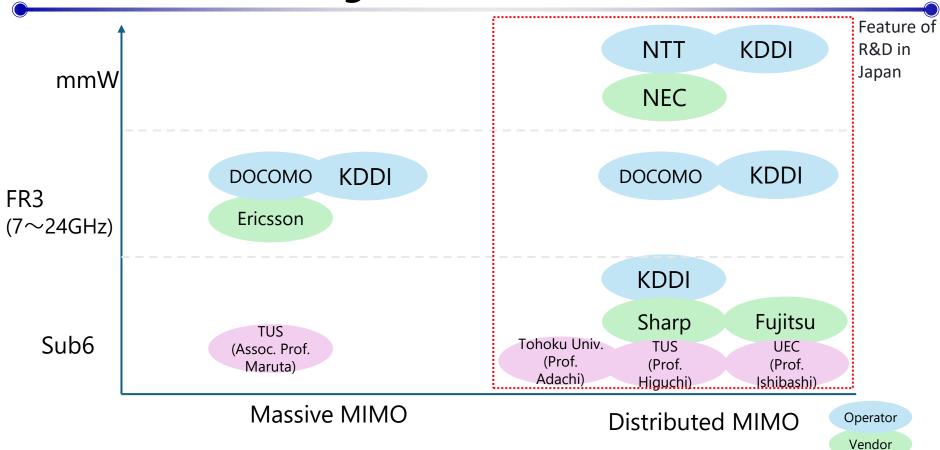
Energy friendly NW

- **Network Energy Saving**
- Energy efficient MIMO

Further evolution of MIMO

- More massive antennas
- Practical D-MIMO
- Side systems (RIS, etc.)

New spectrum


- Frequency Range 3 (FR3)
- Efficient use of FR1-FR3

Section II Recent Activities of Advanced MIMO Technologies in Japan

Section II Contributions

Contributors (1st)	Title	
KDDI Research, Inc.	Research Activities for MIMO Evolution in Each Frequency Range towards 6G	
NTT DOCOMO, INC.	Performance Evaluation of FR3 Distributed MIMO Using 6G Simulator	
NTT DOCOMO, INC.	Performance Evaluation of FR3 Massive MIMO in Real Urban Areas through Link-Level Simulation	
NTT	High-frequency Band Distributed Antenna System	
NEC Corporation	Distributed MIMO Technology for Efficient Utilization of Millimeter-Wave Bands	
Fujitsu Limited	Distributed Antenna Technology (High-density Distributed Antenna System and Transmission Point Sharing Control)	
SHARP Corporation	6G views on Coherent Joint Transmission and Multi-User MIMO	
Ericsson Research Japan	A Study on Advanced MIMO Large Arrays in the 7–15 GHz Spectrum for 6G	
Tohoku University	User Cluster-centric Approach for Cell-free Massive MIMO Systems	
Tokyo University of Science	Low-Complexity User-Centric TRP Clustering Method in Downlink Cell-Free MIMO with Regularized ZF-Based Beamforming	
Tokyo University of Science	Robust Massive MIMO Transmission Technology in Mobile Environments	
The University of Electro- Communications	Recent R&D Activities of Distributed MIMO (D-MIMO) Technologies in Japan	

Main Target of Each Contribution

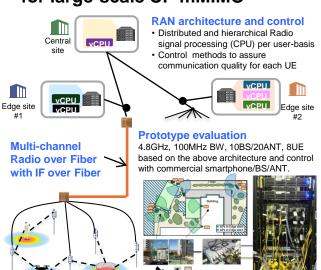
X Technically, it includes technologies that are not limited to specific frequencies and encompasses aspects from both Massive MIMO and distributed MIMO. However, to facilitate an overview, it is being mapped.

University

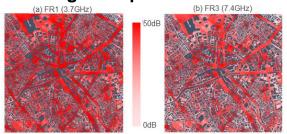
Research Activities for MIMO Evolution in Each Frequency Range towards 6G

(KDDI)

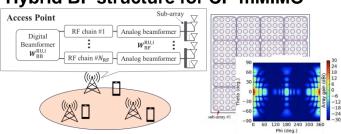
Provide dependable wireless quality by integrating diverse frequency ranges Frequency Ranges (FRs) in 6G

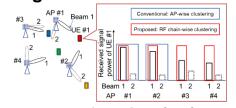

FR1: e.g., 3.5GHz
Further capacity enhancement is necessary

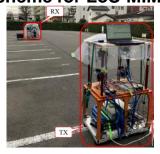
FR3: e.g., 7, 14GHz


A feasibility study
is necessary

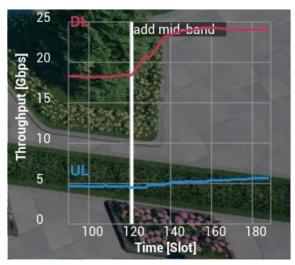
FR2: e.g., 28GHz
Coverage enhancement
is necessary


Developing enable technologies for large-scale CF-mMIMO


Coverage comparison with FR1


Hybrid BF structure for CF-mMIMO

Clustering scheme for FR2 CF-mMIMO


Beamforming (BF) scheme for LoS-MIMO

- The frequency band known as mid-band (FR3: 7 to 24 GHz), is being highlighted as a candidate for 6G.
 - > wider bandwidth than Sub-6 used in 5G
 - ▶ lower frequency than the 28 GHz millimeter wave → low propagation loss
- Achieve high-speed, high-capacity communication while ensuring a certain level of coverage
- Enhance the 6G simulator:
 - > implement mid-band in outdoor urban
 - > evaluate distributed MIMO technology

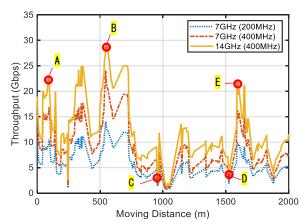
6G Simulator in outdoor urban

UE throughput (enhanced by mid-band)

Performance Evaluation of FR3 Massive MIMO in Real Urban Areas through Link-Level Simulation (DOCOMO)

- To evaluate coverage performance under more realistic conditions, we used a radio wave propagation channel obtained by applying color imaging method to Yokosuka City.
- Based on the antenna configuration:
 - ✓ the peak data rate exceeds the target values for 5G,

✓ Gbps-level communication can be

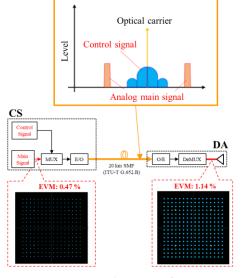

provided everywhere, achieving the goal of "Gbps Anywhere"

Simulation Parameters

Similatation in araniotoro			
Center frequency [GHz]	7	14	
Band width [MHz]	200/400	400	
No. of antenna elements (BS)	256	1024	
No. of antenna elements (MS)	64	256	
No. of digital ports (BS)	64		
No. of digital ports (MS)	16		

Location of BS / paths of MS

Throughput vs. MS moving

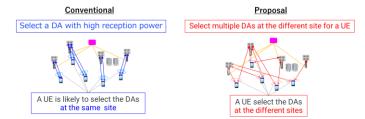

A-RoF and DA/Beam selection Tech. for High-frequency band D-MIMO

(NTT)

◆Tech.1: A-RoF for deployment DA

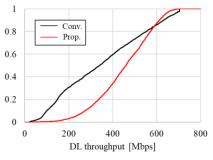
-Advantage of A-RoF (CS ⇔ DA)
CS can be smaller by reducing digital func.

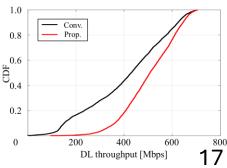
Data and control signals are multiplexed onto one wavelength for optical transmission


EVM is 1.14% even with 20km optical transmission

◆Tech.2: Beam/DA Fast Selection

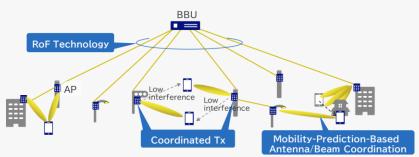
◆Tech.3: DA Selection for SU-MIMO


SU-MIMO performance degrades

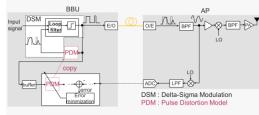


Different DA selection of antennas in the same UE

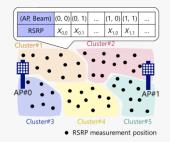
< Experimental Evaluation >


Distributed MIMO Technology for Efficient Utilization of Millimeter-Wave Bands

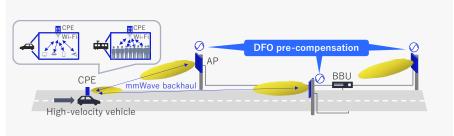
(NEC)


Two use cases for mmWave Distributed MIMO

Elemental Technologies to realize two use cases

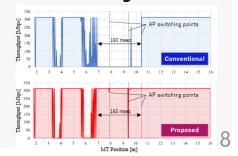

(a) RAN designed for millimeter-wave band for MT

Delta-sigma RoF using COTS optical devices with pulse distortion compensation



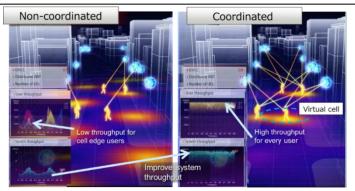
Inter-AP coordinated Tx using RSRP database for

interference reduction


(b) mmWave backhaul for high-velocity vehicles

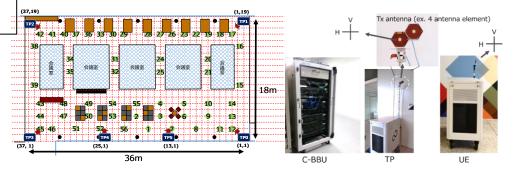
Mobility-prediction based antenna beam coordination for avoiding blocking effect

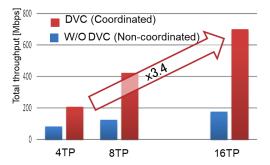
Doppler Frequency Offset Precompensation for smooth antenna switching



Ultra-High Density Distributed Antenna System

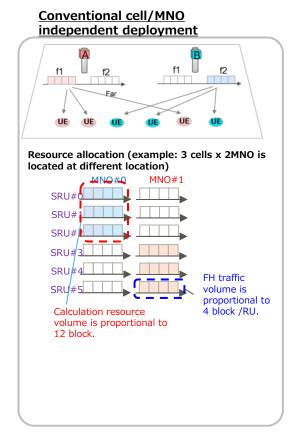
- Dynamic Virtual Cell(DVC) control including following sub feature is implemented in centralized base band unit and control whole area.
- ZF/MMSE based MU-MIMO across 16 distributed TRPs.
- The channel power-based UE selection algorithm that balances high performance and low complexity
- Adaptive over-the-air calibration for achieving precise phase synchronization among TRPs.

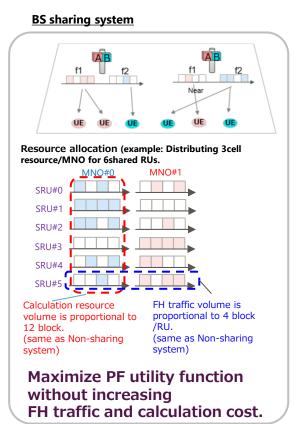

Simulation results, based on a real map and building information from a central Tokyo area, demonstrate the advantages of the proposed HDDA system. A comparison is made against a conventional, non-cooperative cell.

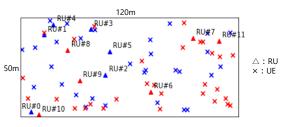

- Significant system throughput gains are achieved.
- The HDDA system provides consistently high throughput performance throughout the coverage area, unlike the conventional cell, which exhibits significant location-dependent variations in UE throughput.

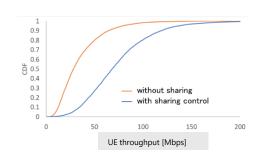
The performance evaluation in the field experiment in real office building:

The large throughput gain is confirmed in the field experiment in the real office building. The throughput of DVC is

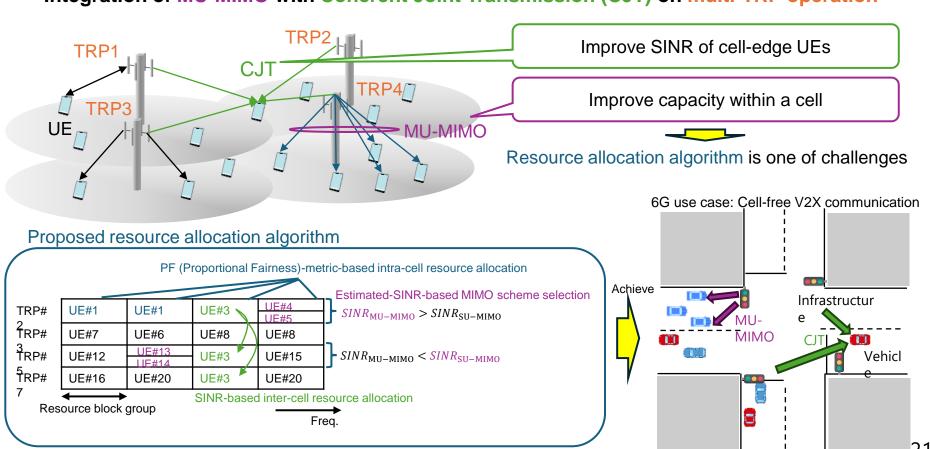

3 times larger than the conventional non-coordinated case.




Ultra-High Density Distributed Antenna System

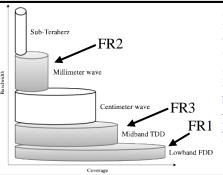


Simulation condition amd results asurming indoor use-case.


Parameter	Setting
Frequency, bandwidt	h 3.8GHz, 100MHz/MNO
Room size	120m×50m×3m
RU distribution	Uniform, 3RU/MNO(4MNO)
UE distribution	Uniform, 30UE/MNO
Tx ant. conf., Tx pow	ver 2×2, 0.5λ space, 24dBm
Pathloss	$Pr_{LOS}PL_{LOS} + (1 - Pr_{LOS})PL_{NLOS}$

6G views on Coherent Joint Transmission and Multi-User MIMO

(Sharp)

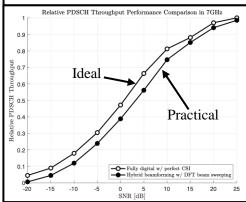


A Study on Advanced MIMO Large Arrays in the 7–15 GHz Spectrum for 6G (Ericsson)

Background

Mobile networks are evolving to boost capacity, energy efficiency and reduce costs. As data demands rise from 5G to 6G, new frequency bands are essential. The **centimeter-wave spectrum** (FR3) is a prime candidate to handle surging data volumes and enhance spectral efficiency.

New Frequency Band for 6G

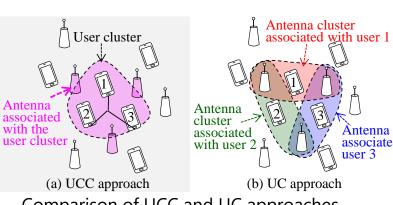


Historically, FR1 delivered wide coverage but limited bandwidth, while FR2 offered high data rates yet poor reach. FR3 strikes a balance, providing broader bandwidth and favorable propagation. Integrating these with massive MIMO can support 6G's diverse performance needs.

Hybrid MIMO Arrays

Despite FR3's promise, non-cellular incumbents require spectrum coexistence, and its use raises complexity, cost, beamforming precision, CSI acquisition, element coupling, and eCPRI overhead. We demonstrate the potential of a straightforward beam-sweeping method to tackle some of the challenges.

Experimental Result


Link-level simulations of PDSCH throughput with adaptive MCS with a 7 GHz NR-compliant hybrid beamforming large-array using beam sweeping and practical channel estimation is shown in comparison with the ideal fully-digital beamforming. Operating over 100 MHz CP-OFDM (30 kHz SCS) under the CDL-B NLoS model, CSI-RS every five slots configures analog beams, with frequency-domain weights via SRS via reciprocity. A 256-element dual-polarized BS and 32-RF-chain hybrid array are compared to a fully digital counterpart. Results show hybrid performance near digital across SNRs, offering cost-efficient trade-offs.

Conclusion

The cmWave (FR3) spectrum offers broad bandwidth and favorable propagation, bridging sub-6 GHz and mmWave for 6G. Exploiting its potential requires advanced large-array tech to mitigate path loss despite added CSI, computation, and hardware challenges; hybrid arrays show near-digital performance.

User Cluster-centric Approach for Cell-free Massive MIMO Systems F. Adachi & R. Takahashi (Tohoku Univ.)

- User-cluster-centric (UCC) approach utilizing partial interference suppression multiuser MMSE/ZF (IS-MU-MMSE/ZF) enhances CF-mMIMO systems [R. Takahashi, 2023]
 - Multiuser spatial multiplexing technique is introduced, which involves forming user clusters (or user-centric virtual small cells) consisting of neighboring users
 - IS-MU-MMSE/ZF is designed to suppress only the dominant interference from the neighboring user clusters
 - UCC approach provides higher capacity than user-centric (UC) approach if the transmit power is sufficiently high

R. Takahashi, H. Matsuo, S. Xia, Q. Chen, and F. Adachi, "Uplink Postcoding in User cluster-Centric Cell-Free massive MIMO," IEICE Trans. Commun., Vol. E106-B, No. 9, pp. 784-757, Sep. 2023.

Comparison of UCC and UC approaches

Capacity comparison
between UCC and UC approaches

512

•Uplink

 $\bullet A = 512$

No. of users, U

•partial IS-MU-MMSE

 $-\Box$ UCC ($U'_{UCC} = 8, A'_{UCC} = 16$)

 $-\mathbf{O} - \mathbf{UC}$ $(U'_{UC} = 1, A'_{UC} = 8)$

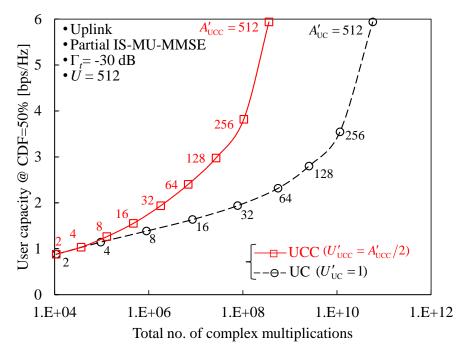
 $\Gamma = -30 \text{ dB}$

@ CDF=50% [bps/Hz]

User capacity

User Cluster-centric Approach for Cell-free Massive MIMO Systems F. Adachi & R. Takahashi (Tohoku Unix.)

• User-cluster-centric (UCC) approach utilizing partial interference suppression multiuser MMSE/ZF (IS-MU-MMSE/ZF) enhances CF-mMIMO systems [R. Takahashi, 2023]

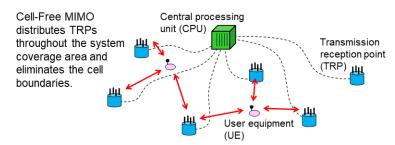

 UCC approach achieves higher user capacity than UC approach under the same computational complexity

Computational complexity

LDLH decomposition for the inverse matrix operation [Björnson, 2017]

		· · · · · · · · · · · · · · · · · · ·
Approach	No. of user clusters	The total no. of complex multiplications required for weight computation for all users
UC	$K = \frac{U}{U'_{\text{UC}}} = U$	$\left(\frac{A_{\text{UC}}^{\prime 2} + A_{\text{UC}}^{\prime}}{2} \left(\frac{1}{K} \sum_{k=1}^{K} P_{k} \right) + \frac{A_{\text{UC}}^{\prime 3} - A_{\text{UC}}^{\prime}}{3} + A_{\text{UC}}^{\prime 2}\right) K$
UCC	$K = \frac{U}{U'_{\text{UCC}}}$	$\left(\frac{A'^{2}_{UCC} + A'_{UCC}}{2} \left(\frac{1}{K} \sum_{k=1}^{K} P_{k} \right) + \frac{A'^{3}_{UCC} - A'_{UCC}}{3} + A'^{2}_{UCC}U'_{UCC}\right) K$

E. Björnson, J. Hoydis, and L. Sanguinetti, "Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency," Foundations and Trends in Signal Processing: Vol. 11, No. 3-4, pp. 154-655, 2017.


User capacity versus computational complexity

R. Takahashi, H. Matsuo, S. Xia, Q. Chen, and F. Adachi, "Uplink Postcoding in User cluster-Centric Cell-Free massive MIMO," IEICE Trans. Commun., Vol. E106-B, No. 9, pp. 784-757, Sep. 2023.

Low-Complexity User-Centric TRP Clustering Method in Downlink Cell-Free MIMO with Regularized ZF-Based Beamforming

Cell-Free MIMO and User-Centric TRP Clustering

User-centric TRP clustering methodology is a key to obtaining a sufficient performance gain.

Conventional User-Centric TRP Clustering Methods

- ◆ Path-loss based method [1, 2]
 - determines a set of TRPs in order of the highest average path gain between the target UE and each TRP.

- ✓ Pros: Low computational complexity due to no need for complex beamforming (BF) matrix calculation
- Cons: Poor performance since BF effect is not well considered
- ◆ Signal-to-leakage-and-noise ratio (SLNR)-based method [3]
 - determines a set of TRPs based on the expected SLNR after BF.

Pros: High performance since BF effect is considered Cons: High computational complexity since complex BF matrix calculation is needed for each candidate cluster

E. Björson and L. Sanguinetti, IEEE Trans. Commun., vol.68, no.7, pp 4247-4261, Jul. 2020.
 Mojahedian and A. Lozano, in Proc. IEEE 2021 29th EUSIPCO, Ireland, 23-27, Aug. 2021.
 Y. Oshima, A. Benjebbour, and K. Higuchi, IEICE Trans. Commun., vol. E97-B, no. 1, pp. 155-163, Jan. 2014.

Proposed Method

Purpose

 To achieve an improvement in system-level throughput performance through low-complexity TRP clustering

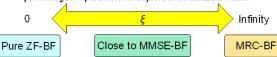
Proposed method

- TRP clustering for each UE is determined based only on the average path gain information between UEs and TRPs. → No BF matrix calculation
- Achievable BF gain and spatial interference levels suitable for Regularized ZF (RZF)-based BF are considered.

RZF-based BF

◆ If a set of TRPs T_k is selected to transmit a signal to UE k BF vector for UE k is obtained based on the following matrix.

$$\mathbf{M}_{k}^{\mathsf{RZF}}(\mathcal{T}_{k}') = \tilde{\mathbf{H}}_{k}^{H}(\mathcal{T}_{k}) \left[\tilde{\mathbf{H}}_{k}(\mathcal{T}_{k}') \tilde{\mathbf{H}}_{k}^{H}(\mathcal{T}_{k}') + \xi \frac{N_{0}}{\rho_{k}} \mathbf{I} \right]^{-1}$$


Normalization term corresponding to noise term

 $\mathbf{H}_{\mathbf{k}}(T_k)$: Channel matrix with the $\mid T_k \mid$ -dimensional channel vector of UE k and other UEs aligned in the row direction

 p_k : Transmit power of the signal transmitted to UE k

N₀: Noise power

 ξ : Nonnegative parameter to adjust the normalization term

Low-Complexity User-Centric TRP Clustering Method in Downlink Cell-Free MIMO with Regularized ZF-Based Beamforming

Proposed TRP Clustering Metric for RZF

□ Proposed TRP clustering metric for the UE k is determined to maximize the following metric

$$\lambda_k^{\text{Prop.}}(\mathcal{T}) = \beta \lambda_k^{\text{Prop.ZF}}(\mathcal{T}) + (1-\beta)\lambda_k^{\text{Prop.MRC}}(\mathcal{T})$$
 \mathcal{T} : The set of candidate TRPs for UE k
 β : weight coefficient that ranges from 0 to 1

Proposed method can select based on a metric that adjusts the value of β according to the applied BF

✓ Two metrics suitable for ZF and MRC are defined as

$$\lambda_k^{\text{Prop.()}} = \frac{\text{Expected received signal power after BF}}{\text{Interference power + Noise power}}$$

Proposed method can determine the set of TRPs for UE *k* based on average path gain assuming RZF

 \square TRP clustering metric $\lambda_{\nu}^{\text{Prop.ZF}}(\mathcal{T})$ suitable for ZF is obtained as

Degrees of freedom of MIMO channel after nulling
$$\lambda_k^{\text{Prop ZF}}(\mathcal{T}) = \frac{\left\{ (T - U^{\text{null}}) / T \right\} \sum_{l=1}^{T} g_{k,l} p_k}{\frac{1}{U} \sum_{j=1}^{U} \sum_{l \in \mathcal{T} \setminus S_j} g_{j,l} \left(g_{k,l} / \sum_{l=1}^{T} g_{k,l} \right) p_k + \alpha N_0}$$
Expected interference power given by candidate TRPs to UEs with unknown CSI

- T: Number of transmitting antennas
 U™!: Number of UEs to null
 U' Number of UEs to consider
- U: Number of UEs to null
 U: Number of UEs to consider
 interference power
- S_j: Set of TRPs that know instantaneous CSI of UE j α: Positive coefficient parameter W.: Noise power

 \square TRP clustering metric $\lambda_{\nu}^{\text{Prop.MRC}}(\mathcal{T})$ suitable for MRC is obtained as

$$\Lambda_k^{\text{Prop.MRC}}(\mathcal{T}) = \frac{\sum_{l=1}^T g_{k,l} p_k}{\frac{1}{U} \sum_{j=1}^U \sum_{l=T}^U g_{j,l} \left(g_{k,l} / \sum_{l=1}^T g_{k,l}\right) p_k} + \alpha N_0}$$
The set of TRPs \hat{S}_j^t interferes to UE j

Numerical Results

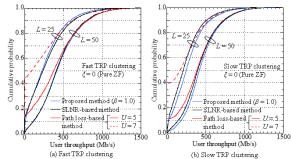


Figure 1: Cumulative probability of the user throughput when pure ZF is applied to the fast and slow TRP clustering scenarios.

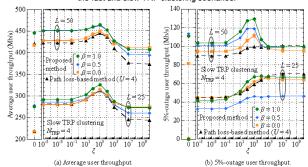


Figure 2: Average and 5%-outage user throughput as a function of ξ .

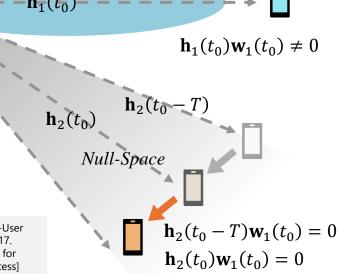
Conclusion

- Proposed method achieves higher system-level throughput levels in a realistic scenario than the conventional path loss-based and SLNR-based methods.
- Meanwhile, the computational complexity of the proposed method is very low since complex BF matrix calculation is not needed.

Robust Massive MIMO Transmission Technology in Mobile Environments ®東京理科大学

(Tokyo Univ. of Science)

Null-Space Expansion (NSE)


By directing nulls toward both pre- and post-variation channels, the null space is expanded to suppress inter-user interference even in high-mobility environment

 $\mathbf{W}_1(t_0)$

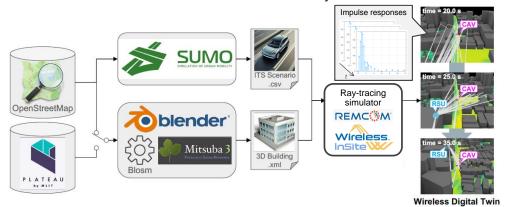
$$\mathbf{W}_{1}(t_{0}) = \begin{bmatrix} \mathbf{h}_{1}(t_{0}) \\ \mathbf{h}_{2}(t_{0}) \\ \mathbf{h}_{2}(t_{0} - T) \end{bmatrix}^{-1}$$
Past CSI are available
$$= [\mathbf{w}_{1}(t_{0}) \quad \mathbf{w}_{2}(t_{0})]$$

- Fully exploits the excessive spatial degrees of freedom in Massive MIMO
- ✓ Compensates for MU-MIMO spatial multiplexing degradation caused by interference leakage due to outdated CSI
- Outperforms existing precoding schemes based on channel prediction

[[]b] Y. Sasaki, K. Arai, J. Nakazato, K. Maruta, "Receiver Maximum Eigenmode Beamforming-Based Null-Space Expansion for Multi-user Massive MIMO in Time-Varying Channel," IEEE Transactions on Vehicular Technology, Jan. 2025. [Early Access]

[[]a] T. Iwakuni, K. Maruta, A. Ohta, Y. Shirato, T. Arai, M. Iizuka, "Null-Space Expansion for Multiuser Massive MIMO Inter-User Interference Suppression in Time Varying Channels," IEICE Trans. Commun., Vol. E100-B, No. 5, pp. 865-873, May 2017.

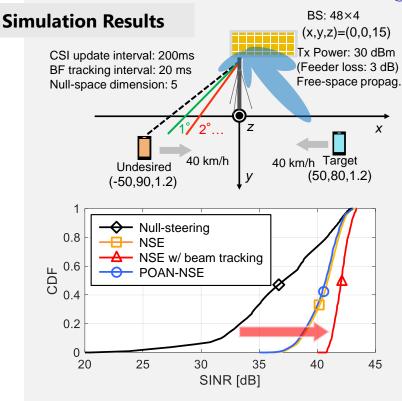
Robust Massive MIMO Transmission Technology in Mobile Environments



Application to mmWave V2X (MIC FORWARD)

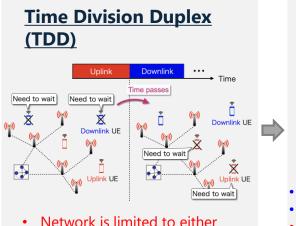
w/KKE

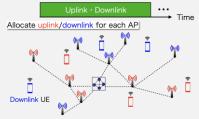
w/KWIC


- ✓ Wireless Digital Twin using open platform: OWDT
- ✓ High-frequency bands require site-specific models
- √ 3D + time domain enables mobile MIMO system evaluation

Implementation for Analog Beamforming

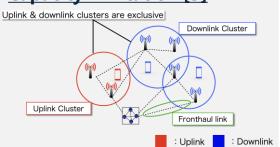
✓ Analog control is more practical from implementation perspective


 Null-space expansion is realized under the constraint of phase-only control:
 Phase Only Adaptive Nulling (POAN)


- ✓ NSE greatly outperforms existing null-steering
- ✓ Beam tracking + NSE gives best performance
- ✓ Phase-only control matches basic NSE

Duplex Design for Scalable Distributed MIMO (D-MIMO) Systems

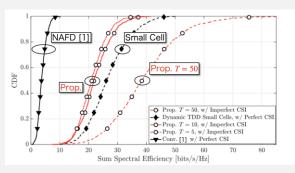
(UEC)


Network-Assisted Full-Duplex (NAFD) [1,2]

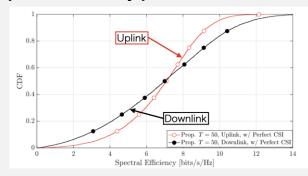
- Achieve Full-Duplex in the network
- Achieve high spectral efficiency (SE)
- Need to consider fronthaul limitation and scalability

Scalable NAFD with Fronthaul Capacity Limitation [3]

Uplink or Downlink

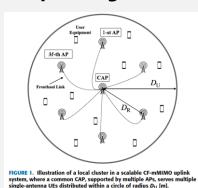

Joint design of beam and AP clustering

- Achieving high scalability with high spectral efficiency
- Robustness against fronthaul limitation
- [1] S. Fukue, et. al., IEEE Access, 2022.
- [2] D. Wang, et. al., IEEE TCOMM 2019
- [3] K. Okui, et.al., IEEE VTC-fall 2023


Numerical Results

Num. of APs 50, Num. of uplink UEs 10, downlink UEs Fronthaul capacity 2bits/s/Hz, Cluster size T=5,10,50

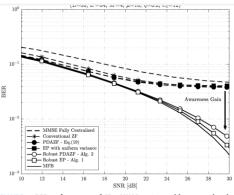
Sum spectral efficiency


Spectral efficiency per UE

Receiver Designs for D-MIMO Systems with Practical Impairments

(UEC)

1 Uplink signal detection with rate-limited fronthaul [4]


<Contributions>

I. EP-based robust receiver:

Effective detection method taking into the highly correlated channel conditions and limited fronthaul link capacity, but limited to feasible system size.

II. Low-complexity robust receiver (PDAZF):

A discrete-aware GLS-based receiver, achieving near performance with significantly lower complexity using proximal gradient method.

FIGURE 2. BER performances of CF-mMIMO systems with proposed and SotA receivers as a function of SNR, with L=50, L'=34, M=4, μ =10, η =0.2 and G_f =12.

2 Bayesian receiver design via bilinear inference with low-resolution ADCs [5]

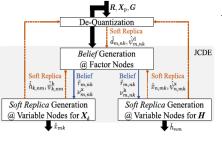


Fig. 2. Schematic of the belief propagation process employed in the proposed DQ-aided BiGaBP algorithm.


<Contributions>

I. Scalable Bayesian receiver:

A novel joint channel and detection estimation (JCDE) algorithm, called DQ-aided BiGaBP, extending bilinear message passing framework to multi-dimensional quantized observations.

II. Insight on DoF-ADC resolution trade-off:

A new insight for scalable CF-mMIMO, showing the optimal ratio between CAP-centralized and AP-distributed antennas depend on ADC quality.

[4] K. Ando, H. limori, T. Takahashi, K. Ishibashi, and G. T. F. de Abreu, "Uplink Signal Detection for Scalable Cell-Free Massive MIMO Systems With Robustness to Rate-Limited Fronthaul," IEEE Access, vol. 9, pp. 102770 – 102782, July 2021.

[5] T. Takahashi, H. limori, K. Ando, K. Ishibashi, S. Ibi, and G. T. F. de Abreu, "Bayesian Receiver Design via Bilinear Inference for Cell-Free Massive MIMO with Low-Resolution ADCs," *IEEE Trans. Wireless Commun.*, vol. 22, no. 7, pp. 4756-4772, July 2023.