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Preface 

Towards the Beyond 5G/6G era, the technological evolution of communication 

networks is progressing rapidly, and artificial intelligence (AI) and machine learning 

(ML) technologies will play a significant role in this evolution. The introduction of AI 

technology into 5G is already being considered at a rapid pace, and applications using 

AI are being installed in smartphones. 

 

In addition, in the 6G era, digital twin (DT) technology is considered to be very 

important, in which the real world is reproduced in cyberspace, and data collected from 

the real world is used to simulate and emulate beyond the constraints of the real world 

using AI, etc., to gain new knowledge, and to feedback and utilize those knowledge to the 

real world. 

 

These AI/ML and DT technologies will be used in various fields to enhance the 

capabilities of Beyond 5G/6G. Beyond 5G White Paper Supplementary Volume "AI/ML 

Technologies" already published by XGMF introduced (i) AI/ML technologies for network 

operation and management, (ii) AI/ML technologies for optimizing radio access resource 

management, and (iii) AI/ML technologies for user/application-centric communications. 

 

This white paper targets the utilization of DT technology in addition to the AI/ML 

technologies mentioned in the above Beyond 5G White Paper Supplementary Volume. 

As 6G Radio Technology Project of XGMF, this white paper summarizes the latest trends 

and research and development (R&D) activities of the utilization of AI/ML and DT 

technologies in the 6G radio technology field. Specifically, it describes the trends of 

standardization in 3GPP and O-RAN toward 6G, as well as the status of global 

technology studies. In addition to the content of the previous Beyond 5G White Paper 

Supplementary Volume, this white paper also introduces in detail cutting-edge R&D 

efforts on the AI/ML and DT technologies for Beyond 5G/6G in Japan. 

 

In conclusion, as technological evolution progresses towards Beyond 5G/6G, the AI/ML 

and DT technologies are emerging as one of key elements in this technological evolution. 

Japan is at the forefront of the next-generation mobile communications revolution due 

to its efforts to overcome challenges to realize the AI/ML and DT technologies and its 

commitment to R&D in this area. The purpose of this white paper is to provide a 

comprehensive overview of the potential, challenges, and future directions of the AI/ML 

and DT technologies for Beyond 5G/6G, with particular emphasis on initiatives and 

progress in Japan. 
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I.  Trends of AI/ML and Digital Twin towards 6G 

The rapid evolution of wireless communication technologies is paving the way for the 

next generation of connectivity, known as Beyond 5G or 6G. As we move towards this 

new era, the integration of artificial intelligence (AI) / machine learning (ML) and digital 

twin technologies becomes crucial. These technologies promise to revolutionize the way 

we design, manage, and optimize wireless communication systems, leading to 

unprecedented levels of efficiency, reliability, and user experience. This section 

introduces both standardization and technology trends of AI/ML and digital twin. 

 

 

I-1.  Standardization in 3GPP and O-RAN for AI/ML 

Tetsuya Yamamoto, Hidetoshi Suzuki 

Panasonic Holdings Corporation 

Liqing Liu, Kozue Hirata 

Sharp Corporation 

Noboru Osawa, Yu Tsukamoto 

KDDI Research, Inc. 

 

The AI/ML technologies have been advanced remarkably in recent years. Applying 

them to wireless communications has received increasing attention. The integration of 

AI/ML to enhance network performance, efficiency, and scalability are active discussion 

in the standardization bodies such as 3rd Generation Partnership Project (3GPP) and 

Open Radio Access Network (O-RAN) alliance [1, 2]. This section provides a brief 

overview of the current AI/ML standardization status within 3GPP and O-RAN. 

 

I-1.1.  Standardization in 3GPP 

In 3GPP, the initial specification of 5G is Release 15. Functional improvements and 

additions for 5G are Release 16 and 17. Release 18 and later are named as 5G-Advanced 

by 3GPP. In 5G-Advanced, the system performance and efficiency of enhanced mobile 

broadband (eMBB) are improved to address the short-term needs. Additionally, the use 

cases and services are further expanded to address the need of various verticals like 

satellite industry. Furthermore, new technology domains based on long- to medium-term 

needs like application of AI/ML are studied and standardized [3]. 3GPP will start 

discussions on 6G from Release 20 and to standardize it in Release 21. A workshop on 

6G was held in March 2025. 

AI/ML can be applied to various purposes. Therefore, numerous studies and 

standardization in areas such as applications, media, system management and radio 

access network (RAN), are progressing within 3GPP. This section describes the status 
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related to application of AI/ML to RAN, which is specific to wireless communication. The 

application of AI/ML to RAN can be categorized into two types: 1) applying AI/ML 

technologies within the wireless network, such as base stations (BSs), and 2) applying 

AI/ML technologies to the air interface, which is the communication between user 

equipment (UE) and BS. 

In the application of AI/ML within RAN, AI/ML technologies could be applied to 

various BS processing to achieve optimal network management and the network 

performance enhancement. In Release 17, the application of AI/ML in three areas were 

studied [4]: 1) network energy saving, 2) load balancing, and 3) mobility optimization. 

Standardization of them was completed in Release 18 in June 2024 [5, 6]. Furthermore, 

in Release 19, functional extensions for new use cases such as network slicing and 

optimization of coverage and capacity are ongoing. Additionally, items that not finalized 

in Release 18 are also under discussion, including the case that base stations functions 

are split into centralized nodes and distributed nodes [7]. For Release 20 5G-Advanced, 

new AI/ML-based use cases based on current 5G architecture and interface are 

considered with QoE optimization, network energy saving, and mobility (including 

multiple-hop target node UE trajectory) as the potential candidates for study [8]. 

In the application of AI/ML to air interface, AI/ML technologies could be utilized for 

enhanced and efficient performance. In Release 18, feasibility of the application of AI/ML 

to air interface was studied [9, 10]. This involved the general framework discussion for 

AI/ML for air interface, as well as the study of specific use cases such as the channel 

state information (CSI) feedback enhancement, beam management, and positioning. In 

Release 19, the actual standardization work is on the progress to realize use cases, such 

as beam management, positioning, and CSI prediction, where the introduction of AI/ML 

technologies would be effective, based on the study from Release 18 [11]. In addition, use 

cases that were not concluded in Release 18 (CSI compression) and new use case 

(mobility) are also to be studied [12, 13]. These use cases are the potential candidates for 

normative work in Release 20 5G-Advanced [8]. The following provides an overview of 

the study of AI/ML to air interface in Release 18 and the current discussion status in 

Release 19. 

 

I-1.1.1.  Framework of AI/ML to Air-interface 

For the framework discussion of AI/ML to air interface, life cycle management (LCM), 

which is the process for appropriately utilizing AI/ML models, was addressed. It was 

identified that the framework for AI/ML application includes elements such as data 

collection, model training, model storage and transfer, inference using models, and model 

management. The relationships among these elements are summarized in Fig. I-1.1.1-1. 
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Fig. I-1.1.1-1: Framework / LCM for applying AI/ML 

 

In Release 18, three levels of coordination were discussed. 

- Level X: AI/ML is implemented, but there are no AI/ML-specific standardization 

extension. For example, AI/ML may be used for channel estimation at UE without 

informing the information related to the usage of AI/ML to the BS. 

- Level Y: There is AI/ML-specific enhancement using the control signal between the 

UE and the network, but there is no transfer of AI/ML models. For instance, based 

on the radio conditions and BS configuration, the network may instruct the UE to 

perform specific AI/ML operations. 

- Level Z: There is a transfer of AI/ML models between the UE and the network. For 

example, AI/ML models trained within the 3GPP network are transferred to the 

UE for the inference. 

In Release 18, two different types of LCM were identified for controlling UE-side 

AI/ML models from the network. 

- Functionality-based LCM 

- Model-ID-based LCM 

In functionality-based LCM, the network controls functionalities without aware of the 

UE’s AI/ML models. By utilizing control signals, the network instructs the selection, 

activation, deactivation, switching of AI/ML-enabled functionalities, and fallback to non-

AI/ML functionalities, while the actual management of the models are within the UE. In 

model-ID-based LCM, the network is aware of the UE’s AI/ML models and controls them. 

Models are identified by model IDs and can be categorized into; 1) physical models, where 

the model structure and parameters are shared between UE and network, and 2) logical 

models, where the actual model structure and parameters are not shared but certain 

characteristics are shared between UE and network. 

When AI/ML models are trained with real field data, they are influenced by not only 

the parameters defined by 3GPP but also conditions that include implementation-

specific scenarios of networks and UEs. Examples of them are BS antenna beam shapes 

and beam control, power control, and implementation-specific receiver algorithms. These 

are called as additional conditions. There is ongoing discussion on which of these 
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parameters and conditions must be aligned between the training and the inference for 

the efficient usage. Ideally, these additional conditions should be aligned between the 

training and inference. However, these conditions can contain proprietary information 

held by stakeholders such as network operators, network vendors, UE vendors, and users. 

Therefore, methods to align the additional conditions without disclosing proprietary 

information as much as possible are studied. One of examples is to exchange the trained 

model parameters and/or dataset between UE and network, which would not disclose 

proprietary information. 

For the efficient usage of AI/ML-enabled functionalities in wireless communication, it 

is crucial that good performance can be maintained across various scenarios and 

conditions, such as different mobility speeds, radio propagation environments, and BS 

antenna configurations. Two main approaches have been discussed for achieving this: 1) 

model generalization, and 2) model switching. Model generalization means a single 

AI/ML model is generalized to handle different scenarios and varying BS antenna 

configurations by using diverse datasets. This approach may lead to larger model sizes 

and increased complexity, which can pose implementation complexity and power 

consumption on UEs. Model switching, on the other hand, entrails using AI/ML models 

that are tailored to specific conditions, such as particular cells. Then, network or UE 

selects appropriate AI/ML models for the specific conditions. While each model may be 

less complex and potentially offer higher performance, this approach has challenges to 

determine which model to be used in certain conditions or environments and how to 

manage and control larger number of models. For example, to select to appropriate model 

could require sharing proprietary network-side information with the UE, as previously 

mentioned. 

 

I-1.1.2.  CSI Feedback Enhancement 

Accurate CSI is vital for optimal link adaptation and resource allocation. In 3GPP, CSI 

feedback mechanism involves the UE measurements and CSI reporting. However, a 

temporal delay exists between the CSI report time and the time when BS uses the CSI 

for traffic transmission. This temporal delay can result in that the reported CSI becomes 

outdated CSI, particular for mobile UEs, where the reported CSI no longer reflects actual 

channel conditions the UE experiences. The outdated CSI could degrade link 

performance and scheduling efficiency. 

To address the challenges, 3GPP discusses the use of AI/ML on UE side for temporal 

CSI prediction. The AI/ML-based temporal CSI prediction aims to predict CSI for 

channel conditions associated with future time instances based on historic CSI 

measurements. 

Studies were conducted in Release 18 and parts of Release 19 and the performance 

improvement is observed. For example, it was observed that user perceived throughput 
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(UPT) could improve by approximately 5% compared to non-AI/ML-based CSI prediction 

method that is introduced in Release 18 to improve performance loss for a UE at high / 

medium especially in MU-MIMO scenarios. 

As a result, standardization of CSI prediction using UE-side model is proceeding in 

Release 19 starting from Q1 of 2025. This effort focuses on developing the functionality-

based LCM procedures necessary to support data collection for AI/ML training, inference 

configuration and reporting, and performance monitoring. Additionally, the contents of 

the predicted CSI to be reported to BS, such as whether to reuse the Release 18 Type II 

Doppler codebook, are to be specified. For performance monitoring, discussions are 

ongoing regarding whether to introduce intermediate-KPI-based performance 

monitoring mechanism with squared generalized cosine similarity (SGCS) being 

considered as potential intermediate KPIs. 

CSI reporting overhead is a challenge when the number of antennas and frequency 

resources is increased. To address the overhead, 3GPP also discusses the compression of 

CSI using AI/ML. Specifically, the UE compresses the CSI in the spatial and frequency 

domains using an AI/ML model, and reports the compressed information to the BS as 

CSI report. The BS then uses an AI/ML model on the network-side to reconstruct the 

original CSI from the compressed information, reported by the UE. In the studies 

conducted in Release 18, a reduction in CSI overhead of approximately 10% to 60% was 

observed compared to traditional CSI reporting methods, i.e., not using AI/ML [10]. 

CSI compression involves a two-sided model where inference processing using AI/ML 

models is executed on both UE side and network side. One of the challenges in 

considering two-sided model is how to coordinate training between UE side and network 

side. With this context, in Release 18, several types of training that involve different 

degrees of collaboration between UE side and network side were studied in terms of 

inter-vendor training collaboration complexity, performance, maintainability, and 

standardization impact. CSI compression using two-sided AI/ML model continues to be 

studied in Release 19 in order to alleviate / resolve the issue related to inter-vendor 

training collaboration. The issue on improving the trade-off between performance, 

computational complexity / overhead is also under discussion. 

 

I-1.1.3.  Beam Management 

Especially in high-frequency bands, such as millimeter wave, beamforming operation 

is essential to extend coverage and maintain robust connectivity in a cell. Since Release 

15, beam management (BM) has been supported in 3GPP new radio (NR) specifications. 

To extend the coverage of a beam while still covering the cell area, BS needs to apply a 

larger number of narrow beams. However, this increases the overhead of CSI reference 

signal (CSI-RS) transmission for BM. In addition, the inherent delay between beam 

reporting and beam utilization could lead to the use of outdated beam information, 
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particularly for medium / high mobility UEs, resulting in inappropriate beam choices for 

traffic transmission. 

To address these challenging BM issues, 3GPP has initiated discussions on applying 

AI/ML to BM. Two BM cases, 1) BM Case 1, i.e., “spatial-domain downlink beam 

prediction” and 2) BM Case 2, i.e., “temporal downlink beam prediction”, were studied 

and evaluated in Release 18. 

For BM Case 1, optimal beam(s) are predicted from a set of downlink beams (“set A 

beams” based on measurement results from a set of downlink beams (“set B beams”) 

which is a subset of the “set A beams” or beams different from “set A beams”, This 

approach aims to reduce the overhead associated with massive CSI-RS transmission for 

beam measurement. For BM Case 2, optimal beam prediction is performed based on 

historic measurement results. This approach allows the AI/ML to capture and learn the 

evolution of channel conditions over time, thereby predicting optimal beams for future 

time instances. As evaluated during the study phase in Release 18, AI/ML can provide 

good beam prediction performance. For example, for BM Case 1, most evaluation results 

showed that 70% ~ 90% or even more than 90% beam prediction accuracy could be 

achieved by measuring only 1/4 of the beams, compared to measure all beams. 

AI/ML for BM Case 1 and Case 2 can be implemented on either UE side or BS side. 

Standardization efforts are underway to specify the necessary signaling and procedure 

to support AI/ML training, inference, and performance monitoring. Existing CSI 

framework is reused to integrate the AI/ML for BM in the current 3GPP specification, 

ensuring minimal specification impact. 

 

I-1.1.4.  Positioning 

In 3GPP, various positioning mechanisms has been specified for both downlink and 

uplink, including positioning using reference signals, positioning based on timing 

differences, positioning based on signal power, and positioning based on the angle of 

arrival of received signals, etc. 

A key challenge in positioning is that the accuracy of location estimation heavily 

depends on whether measurements can be performed in line-of-sight (LOS) 

environments. In non-line-of-sight (NLOS) environment, such as indoor factories, or in 

environments with a high degree of multipath, the accuracy of positioning degrades. 

Therefore, positioning accuracy improvement using AI/ML was considered. 

Specifically, two sub use cases were discussed: 1) location information is directly 

estimated using AI/ML models, and 2) AI/ML models generate intermediate statistical 

information for positioning estimation. 

For direct location information estimation, two approaches were identified as 

illustrated in Fig. I-1.1.4-1: 1) performing training and inference on UE side, and 2) 

having the BS assist in training and inference through the location management 
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function (LMF). Here, the LMF is a network function responsible for location information 

services as located in the 5G core network. In the studies in Release 18, it was found that 

the accuracy can be improved from 15 meters to below 1 meter using AI/ML models in 

indoor factory scenarios. 

 

 

(a) UE-side model                                           (b) BS-assisted LMF-side model 

Fig. I-1.1.4-1: Application of AI/ML for positioning accuracy improvement 

 

For intermediate statistical information for positioning estimation, to use timing and 

LOS / NLOS determination were discussed. It was studied whether training and 

inference would be performed solely on BS side or solely on UE side. In Release 18 study, 

a significant accuracy improvement was observed, comparable to the case of directly 

estimating location information. 

Based on the Release 18 study, the positioning accuracy improvement is specified in 

Release 19. For direct estimation of location information using AI/ML models, both 

scenarios where training and inference are performed on UE side and where BS assists 

the training and inference through LMF, are to be specified. For generating intermediate 

statistical information using AI/ML models, scenarios where training and inference are 

conducted on BS side, are to be specified. Additionally, as the intermediate statistical 

information, at least information related to LOS / NLOS conditions and timing 

information, are to be used. Furthermore, signaling and mechanisms for LCM of AI/ML 

models are progressing. Additionally, methods for aligning the network-side additional 

conditions between the training and inference for UE-side inference are also under the 

discussion. 

 

I-1.1.5.  Mobility 

To further enhance the mobility functions, AI/ML for mobility is currently under 

investigation as a study item in Release 19. The primary role of the mobility function is 

to manage the transition from the serving cell to a cell / gNB with higher quality based 

on the measurement results obtained from the UE, referred to as handover. AI/ML is 

Synchronization signal，
PRS

AI/ML model
Measurement UE location

SRS

LMF

AI/ML model
Measurement UE location



 

 

 

 18 

expected to improve the efficiency of the mobility function, with two goals identified for 

this study, as illustrated in Fig. I-1.1.5-1 and I-1.1.5-2. 

 

 

Fig. I-1.1.5-1: Measurement reduction for mobility 

 

 

Fig. I-1.1.5-2: Handover event prediction 

 

The first study goal is the reduction of measurement effort, shown in Fig. I-1.1.5-1. In 

this use case, UE skips measurements on certain resource that are usually measured for 

mobility functions. Instead of performing actual measurements, AI/ML predicts the 

received power at these resources and complements the measurement results 

accordingly. Consequently, UE can reduce the measurement effort if the accuracy of the 

prediction is sufficiently high. While Fig. I-1.1.5-1 outlines time domain predictions, 

investigations into predictions in the frequency and spatial domains are also underway. 

The second study goal focuses on improving handover performance by prediction of 

handover situation. In Fig. I-1.1.5-2, AI/ML predicts whether a handover-related event 

is likely to occur in the future. Using the results of these predictions, a prediction-based 

handover process is considered, as depicted in Fig. I-1.1.5-3. 

 

 

(a) Early handover execution                      (b) Early handover preparation 

Fig. I-1.1.5-3: Prediction-based early handover 
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If a handover is executed preemptively based on predictions, as shown in Fig. I-1.1.5-

3(a), the UE can switch to a neighboring cell before the quality of the current serving cell 

declines. This approach also mitigates the risk of handover failure due to sudden 

degradation of the current cell’s quality. Conversely, since the execution of the handover 

depends on the prediction results, prediction errors could lead to improper handovers. 

To address these potential drawbacks, the use case illustrated in Fig. I-1.1.5-3(b) is also 

being considered. Handover preparation is initiated immediately after the prediction, 

but handover execution, such as handover command transmission, occurs only after the 

actual measurement captures the handover situation. Even in this case, the handover is 

completed earlier than in the legacy handover because the preparation is completed in 

advance. 

In 3GPP Release 19, the effectiveness of the above prediction capabilities is evaluated 

and analyzed through simulations. Based on the study results, 3GPP will then identify 

the specification impact of AI/ML for mobility, with detailed specifications to be 

discussed in Release 20. 

 

I-1.2.  Standardization in O-RAN 

The O-RAN Alliance aims to transform the way RAN is built by promoting openness, 

intelligence, and flexibility. Its mission is to drive the mobility industry towards an 

ecosystem of innovative, multi-vendor, interoperable, and autonomous RAN, with 

reduced cost, improved performance and greater agility. The Alliance has established 

technical working groups (WGs) focused on specific areas such as use cases, architecture, 

RAN intelligent controller (RIC), open fronthaul, cloudification, and security. The O-

RAN architecture and interface specifications are consistent with 3GPP architecture and 

interface specifications to the extent possible. 

In the O-RAN architecture [14], service management and orchestration (SMO) 

framework contains non-real-time RIC (Non-RT RIC) function which supports 

intelligent RAN optimization in non-real-time (i.e., greater than one second) by providing 

policy-based guidance. Non-RT RIC can leverage SMO services such as data collection 

and provisioning services of O-RAN nodes. Near real-time RIC (Near-RT RIC), O-CU-

CP, O-CU-UP, O-DU, and O-RU are the network functions for the radio access side. 

Near-RT RIC enables control and optimization of O-RAN (O-CU and O-DU) nodes and 

resources with near real-time control loops (i.e., 10 ms to 1 s), The Near-RT RIC collects 

near real-time RAN information from the O-RAN nodes and controls the behaviors of 

them on the basis of the policies and the enrichment data provided by the Non-RT RIC. 

Potential O-RAN use cases are discussed in O-RAN WG1 use case task group (UCTG) 

[15]. The use cases are described at a high level, emphasizing how the use case is enabled 
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by O-RAN architecture. These high-level use cases are prioritized within O-RAN, and 

selected use cases are further detailed in O-RAN WG1 UCTG and relevant O-RAN WGs 

to define the requirements for O-RAN components and their interfaces. 

One of the key innovations driven by O-RAN is the concept of intelligent RAN. By 

integrating AI/ML into the network, operators can improve performance, optimize 

resource allocation, and enhance user experiences. AI/ML workflow technical report (TR) 

was created within WG2, summarizing the deployment scenarios, procedures, 

requirements, and issues for AI/ML [16]. Based on the requirements outlined in this TR, 

“AI/ML in O-RAN” was established as a feature of MVP-C (Minimum Viable Plan 

Committee) to specify the architecture and interfaces necessary to realize the AI/ML 

lifecycle using RIC. In the following sections, we provide overview of the AI/ML 

framework in O-RAN and, several O-RAN use cases that utilize AI/ML in [15]. 

 

I-1.2.1.  AI/ML Framework 

This section provides the framework of AI/ML procedure in O-RAN [16]. The potential 

mapping relationship between the ML components and network functions, interfaces 

defined in O-RAN are illustrated in Fig. I-1.2.1-1. 

 

 

Fig. I-1.2.1-1: AI/ML framework 

 

The Non-RT RIC and Near-RT RIC support AI/ML workflow services. The following 

AI/ML services have been defined: 

- AI/ML training services: These services allow an AI/ML training service Consumer 

to request training of an AI/ML model by specifying training requirements (e.g., 

required data, model, validation criteria, etc.). 
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- AI/ML model management and exposure services: These services enable 

- AI/ML model registration / deregistration 

- AI/ML model discovery 

- AI/ML model change subscription 

- AI/ML model storage 

- AI/ML model training capability registration / deregistration (optional 

service) 

- AI/ML model training capability query (optional service) 

- AI/ML model retrieve 

- AI/ML model performance monitoring services: These services allow an authorized 

AI/ML performance monitoring service Consumer to request monitoring the 

performance of a deployed AI/ML model. The performance information of an AI/ML 

model is produced by an App within which the model is deployed or by AI/ML model 

inference service Producer performing the model inference. 

- AI/ML model inference services: These services allow an App to request and or to 

cancel the inference for a registered AI/ML model. The App needs to be authorized 

to request inference for registered AI/ML models. 

The ML functions are implementation variability components, there are many 

combinations of the deployment scenarios. The typical deployment scenarios that are 

considered for AI/ML framework in O-RAN are: 

- Deployment Scenario 1.1: AI/ML Continuous Operation / AI/ML Model 

Management / Data Preparation / AI/ML Training and AI/ML Inference are all in 

Non-RT RIC. 

- Deployment Scenario 1.2: AI/ML Continuous Operation / Data Preparation (for 

training) / AI/ML Training are in Non-RT RIC, AI/ML Model Management is out 

of Non-RT RIC (in or out of SMO). Data Collection (for inference) / Data 

Preparation (for inference) / AI/ML Inference is Near-RT RIC. 

- Deployment Scenario 1.3: AI/ML Continuous Operation / AI/ML Inference are in 

Non-RT RIC. Data Preparation / AI/ML Training / AI/ML Model Management are 

out of Non-RT RIC (in or out of SMO). 

- Deployment Scenario 1.4: Non-RT RIC acts as the ML training host for offline 

model training and the Near-RT RIC as the ML training host for online learning 

and ML inference host. 
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Fig. I-1.2.1-2: Deployment Scenario 1.1 

 

 

Fig. I-1.2.1-2: Deployment Scenario 1.2 

 

 

Fig. I-1.2.2: Deployment Scenario 1.3 
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Fig. I-1.2.1-5: Deployment Scenario 1.4 

 

I-1.2.2.  Massive MIMO Beamforming Optimization 

Massive MIMO (mMIMO) is a crucial technology for 5G, leveraging multi-antenna 

transmission and reception to improve power levels and enhance capacity by spatial 

multiplexing operations. In addition, advantages include advanced network 

management technologies like beam shaping, beam-based load balancing, optimized 

beam mobility, adaptive cell coverage areas. In order to optimize networks, fully digital 

beamforming (BF) methods are to be employed for below 6 GHz frequency. Grid of Beams 

(GoB) is a BF method which aims at selectively covering regions of interest with a 

suitable subset of radio beams. Beam-based mobility robustness optimization is a BF 

method enhancing beam specific mobility performance, e.g., by adding beam specific 

individual offsets. 

The high number of configuration parameters, the amount of measurement input data, 

the complexity, pro-activeness as well as non- and near-real time requirements suggest 

the application of AI/ML techniques. In this use case, three optimization loops for 

mMIMO BF were proposed. 

1) Non-RT massive MIMO GoB beamforming optimization 

The concept of Non-RT BF optimization is shown in Fig. I-1.2.2-1. Non-RT RIC 

hosts an application with long-term analytics function (= ML training), whose task 

is to collect, process and analyze antenna array parameters, cell performance KPIs, 

UE mobility / spatial density data, traffic density data, interference data and BF 

gain / beam reference signal received power (RSRP) and minimization of drive tests 

(MDT) measurement data. The output of the BF optimization inference can be 

optimized BF configuration, number of beams, beam elevation, beam horizontal & 

vertical widths and power allocation of beams. 



 

 

 

 24 

 

 

Fig. I-1.2.2-1: Non-RT BF optimization 

 

2) Near-RT massive MIMO beam-based Mobility Robustness Optimization (bMRO) 

The concept of bMRO is shown in Fig. I-1.2.2-2. Non-RT RIC hosts an application 

with long-term analytics function (= ML training), whose task is to collect and 

analyze underlying GoB configuration, if GoB configuration exists, beam mobility 

and failure statistics, L1 / L2 RSRP values, potential source-target beam pairs. 

Near-RT RIC hosts an xApp with bMRO optimization function (= ML inference), 

whose task is to monitor potential source-target beam pairs and optimize beam 

mobility for scheduling by managing user-beam paring. The output of the bMRO 

optimization function can be adjusted offsets for candidate source-target beam 

pairs for beam mobility. 

 

 

Fig. I-1.2.2-2: Near-RT beam-based mobility robustness optimization 
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3) Near-RT massive MIMO Beam Selection Optimization (BSO) 

The concept of BSO function is shown in Fig. I-1.2.2-3. Non-RT RIC hosts an 

application with long-term analytics function (= ML training), whose task is to 

collect and analyze underlying GoB configuration, if GoB configuration exists, 

beam mobility and failure statistics, L1 / L2 RSRP values, potential source-target 

pairs. Near-RT RIC hosts an xApp with BSO function (= ML inference), whose task 

is to monitor potential source-target beam pairs, and to optimize beam mobility for 

scheduling by managing user-beam pairing. The output of the BSO optimization 

function can be adjusted offsets for candidate source-target beam pairs for beam 

mobility. 

 

 

Fig. I-1.2.2-3: Near-RT BSO function 

 

I-1.2.3.  RAN Slice SLA Assurance 

The 3GPP standards architected a sliceable 5G infrastructure which allows creation 

and management of customized networks to meet specific service requirements that can 

be demanded by future applications, services and business verticals. Such a flexible 

architecture needs different requirements to be specified in terms of functionality, 

performance and group of users which can greatly vary from one service to the other. 

The 5G standardization efforts have gone into defining specific slices and their Service 

Level Agreements (SLAs) based on application / service type. Since network slicing is 

conceived to be an end-to-end feature that includes the core network, the transport 

network and the RAN, these requirements should be met at any slice subnet [17]. 

The requirements of network slicing in RAN include customizable network capabilities 

such as the support of very high data rates, traffic densities, service availability and very 
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low latency. These capabilities are always provided based on an SLA between the mobile 

operator and the business customer, which brought up interest for mechanisms to ensure 

slice SLAs and prevent its possible violations. O-RAN’s open interfaces and AI/ML-based 

architecture will enable such challenging mechanisms to be implemented and realize the 

network slicing in an efficient manner. This use case was proposed to clarify necessary 

mechanisms and parameters for RAN slice SLA assurance. 

As shown in Fig. I-1.2.3-1, RAN slice SLA assurance scenario involves Non-RT RIC, 

Near-RT RIC, E2 nodes and SMO interaction. The scenario starts with the retrieval of 

RAN specific slice SLA / requirements (possibly within SMO or from NSSMF depending 

on operator deployment options). Based on slice specific performance measurements 

from E2 nodes, Non-RT RIC and Near-RT RIC fine-tune RAN behavior aligned with O-

RAN architectural roles to assure RAN slice SLAs dynamically. Non-RT RIC monitors 

long-term trends and patterns for RAN slice subnets’ performance and employs AI/ML 

methods to perform corrective actions through SMO (e.g., reconfiguration via O1) or via 

creation of A1 policies. Non-RT RIC can also construct / train relevant AI/ML models 

that will be deployed at Near-RT RIC. A1 policies possibly include scope identifiers (e.g., 

S-NSSAI) and statements such as KPI targets. On the other hand, Near-RT RIC enables 

optimized RAN actions through execution of deployed AI/ML models in near real-time 

by considering both O1 configuration (e.g., static RRM policies) and received A1 policies, 

as well as received slice specific E2 measurements. 

 

 

Fig. I-1.2.3-1: Slice SLA assurance 

 

I-1.2.4.  Energy Saving 

Energy saving (ES) of the RAN is an important topic for network operators. ES for 

legacy and 5G networks can be carried out using manual configuration in different 

network layer and in different time scales. However, due to the varying nature of traffic 

load and to user mobility, the optimization of energy consumption of the RAN is complex. 

There is a risk that RAN equipment consume much energy while serving low traffic, or 

even no traffic at all. 
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O-RU is responsible for the major part of energy consumption in the mobile network. 

3GPP defines both centralized and distributed ES features [18], which are mainly 

targeting intra- or inter-RAT cell on/off switching, The ES use case was proposed to 

leverage on O-RAN AI/ML services and open interfaces in order to introduce optimized 

ES solutions involving switching off/on of different network components at different time 

scale. The ES use cases is divided into three sub use cases. 

1) Carrier and cell switch off/on ES 

Time scale: non-real-time for both control and controlled system. The feature aims 

at reducing O-CU / DU / RU power consumption by switching off/on one or more 

carriers or a cell of a given technology. AI/ML assisted solutions in the Non-RT RIC 

can be used to control the traffic load of the carriers and the cell, and to 

automatically decide when to switch off/on one or more carriers or a cell using O1 

and/or open fronthaul M-plane parameter configurations. Off/on switching is 

accompanied with adequate traffic steering, guided by policies, to ensure service 

continuity and quality of service. 

2) RF channel switch off/on ES 

Time scale: non- or near real-time are possible for both control and controlled 

system. This feature aims at reducing power consumption of O-RU with massive 

MIMO deployment by switching off/on certain RF channels. Using AI/ML assisted 

solutions, rApp or xApp will trigger switching off/on certain RF channels, based on 

traffic information such as load, user location and mobility. As example, one can 

switch off 32 out of 64 RF channels in a digital mMIMO architecture or reduce the 

number of layers and/or number of multi-user scheduled UEs in a hybrid 

architecture. The O-RU reconfiguration can be performed using the open fronthaul 

M-plane from E2 node or SMO. 

3) Advanced sleep mode ES 

Time scale for control: near real-time. Time scale for the controlled system: real-

time and near real-time. This feature is expected to reduce power consumption by 

partially switching off O-RU components. Using multi-dimensional data, e.g., 

traffic load, user service type, energy efficiency measurements, etc., the Near-RT 

RIC can configure cell parameters, such as the SSB periodicity needed for the 

operation of advanced sleep modes. 
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I-2.  Introduction of AI and Digital Twin Technologies for 6G 

Tetsuya Yamamoto, Panasonic Holdings Corporation 

Takahiro Yamazaki, NTT Network Innovation Laboratories, NTT Corporation 

 

I-2.1.  AI for Signal Processing / Air-interface 

In recent years, with the increasing complexity of next-generation wireless 

communication systems such as Beyond 5G/6G, environments with numerous 

interdependent parameters that are difficult to manage with conventional methods have 

become a reality. This is driven by the challenge of achieving high-precision and real-

time performance across a variety of communication functions, including channel 

estimation, beamforming, positioning, and resource allocation in time, frequency, space, 

and power, etc. In response, AI/ML technologies are expected to provide groundbreaking 

solutions by solving complex nonlinear mapping problems and analyzing vast amount of 

data. 

In wireless signal processing at the physical layer, efforts are underway to replace 

conventional processes such as channel coding, synchronization, channel estimation, 

beamforming, and transmit power control with AI/ML models like deep neural networks. 

For example, AI/ML-based optimization are suggested to contribute to reduce 

computational complexity and improved accuracy in signal detection, blind channel 

estimation and demodulation using minimal reference signals, and the decoding of 

advanced error-correcting codes. As a result, optimal signal processing is expected to be 

maintained even in the face of environmental variations, noise, and interference [1] – [3]. 

As shown in Section I-1.1, there are ongoing standardization efforts to exploit AI/ML 

in the air interface. The 3GPP has been studying the application of AI/ML to NR air 

interface since Release 18, In Release 19, the specification of CSI prediction, beam 

management, and positioning are being specified, and the feasibility of CSI compression 

is being studied. 

Furthermore, the concept of an AI-native air interface represents an evolution from 

traditional, fixed air interface protocols toward new communication methods that 

dynamically adapt to the constraints and variability of the wireless environment as well 

as to hardware imperfections. As a first step, a hybrid system combining AI/ML and non-

AI/ML processing blocks such as signal detection, channel estimation, and symbol 

mapping at the physical layer is expected. Looking ahead, it is conceivable that AI/ML 

models integrating multiple functions, such as joint channel estimation, equalization, 

and de-mapping, will emerge. With advancements in hardware acceleration and 

improvements in the reliability of AI/ML models themselves, research is moving towards 

the realization of system composed entirely of AI/ML components. 
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Moreover, in high-frequency ranges such as millimeter-wave and terahertz bands, RF 

impairments, such as the nonlinearity of power amplifiers (PAs), frequency selectivity, 

IQ imbalance, direct current (DC) offset, carrier leakage, and phase noise, have a 

significant impact on system performance. For the nonlinear distortion of PA, nonlinear 

compensation techniques, such as digital predistortion employing AI/ML, have attracted 

considerable attention. By utilizing neural networks, high compensation effects are 

anticipated even for complex nonlinear distortions that conventional polynomial-based 

models cannot adequately express, although new challenges in terms of computational 

resources and hardware implementations have also surfaced. Technologies that 

compensate for multiple RF impairments by utilizing AI/ML such as deep neural 

networks have also attracted attention. 

These advances in AI/ML technologies are exerting a profound influence on the overall 

design of wireless communication systems, leading to the establishment of performance 

requirements such as training / inference accuracy and latency KPIs from both 

communication and AI/ML perspective. in 6G networks, in order to meet these KPIs, 

support for large-scale distributed learning and real-time inference will be essential, 

along with the integrated system design that transcends traditional boundaries between 

communication and AI. 

In summary, AI/ML is set to revolutionize conventional signal processing and air 

interface paradigms, serving as the key technology to achieve dynamic and highly 

efficient optimization in complex wireless environments. It is poised to become a central 

component of future Beyond 5G/6G systems. 

 

I-2.2.  AI for RAN 

AI/ML technologies are expected to be used for operations, administration and 

maintenance (OAM) and dynamic control of RAN. 

For OAM of RAN, instead of a manual parameter configuration, an automatic 

parameter configuration by AI/ML technologies is proposed by [4, 5]. It will reduce 

human operation resources and human errors. 

For dynamic control of RAN, dynamic traffic offloading, resource allocation and power 

control by AI/ML technologies are proposed by [6, 7]. It will improve quality of 

communication and power efficiency. 

On the other hand, as described in previous section (I-1-2), the architecture of AI/ML 

for RAN is standardized in O-RAN Alliance [8, 9]. With O-RAN RIC, application-aware 

RAN control such as application-based resource allocation will be enabled. 

Additionally, AI/ML technologies are used for system failure detection [10]. With 

AI/ML, the threshold for failure detection can be dynamically configured, and it makes 

the probability of failure detection higher. 
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In summary, AI/ML technologies are expected to reduce operation costs of RAN, to 

improve quality of communication of RAN. Following 5G system, it will also become 

important for Beyond 5G and 6G systems. 

 

I-2.3.  AI for Radio Propagation / Digital Twin 

AI/ML technologies are expected to evolve radio propagation and radio simulation in 

digital virtual environments such as digital twin. 

For radio propagation, as described in [11, 12], AI/ML technologies can be applied for 

channel parameter estimation, channel modelling, channel prediction and LOS / NLOS 

identification. AI/ML technologies can make ML models with multimodal values such as 

measured received signal strength indicator (RSSI), geographical information, camera 

images, states of UEs and etc. Using this ML model, it is expected to support more 

flexible radio propagation situations and scenarios for Beyond 5G and 6G. 

For radio simulation in digital twin, AI/ML technologies can reduce computational cost 

while maintaining simulation accuracies. In [13], for real-time digital twin system, a ML 

model trained with ray tracing results, geographical data and rough propagation model 

is proposed. This paper shows that proposed model reduces computational cost while 

maintaining accuracies compared to conventional ray tracing. Not only this example, but 

also many AI/ML approaches have been investigated to implement more realistic and 

cost-effective radio simulation. 

In summary, AI/ML is a promising approach to make close radio propagation model to 

the real one. It should accelerate the development of digital twin and cyber physical 

system.   

 

I-2.4.  Network Architecture for AI/ML Usage in RAN 

Network architecture for using AI/ML for RAN is under consideration. 

Conventionally, AI/ML application functions are placed in core network or cloud 

infrastructure. However, it increases the latency due to AI/ML processing is carried out 

in a location farther away than the cellular area provided by the RAN. To resolve this 

problem, placing AI/ML application functions to RAN side, such as MEC or computing 

infrastructure for vRAN, is proposed [14]. 

Additionally, for 6G, a network architecture which distributes AI/ML application 

functions to core network, RAN, user devices and all of the network functions is proposed. 

It will enable an adaptive computing resource allocation for AI/ML in end-to-end 

communications. With this architecture, more AI/ML applications will be effectively 

utilized in 6G systems. 
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II.   R&D efforts on AI/ML and Digital Twin in Japan 

This section introduces leading-edge R&D efforts on AI/ML and digital twin for Beyond 

5G/6G in Japan, with the aim of accelerating R&D to advance future communications 

and services. This white paper on AI/ML and digital twin technologies includes 19 papers 

categorized into 4 typical technological categories, as shown below: 

AI for signal processing / air interface 

1. Scalable AI/ML for radio cellular access 

2. Study on training collaboration at UE- / network-side for CSI compression with 

two-sided AI/ML model 

3. Proof-of-concept for AI-native air interface toward 6G 

4. Neural network-based digital pre-distortion for wideband power amplifier using 

DeepShift 

5. AI calibration network under hardware limitations 

6. Performance requirements and evaluation mythology for AI and communication 

in 6G 

AI/ML for RAN 

7. Study on AP clustering with deep reinforcement learning for cell-free massive 

MIMO 

8. Cross-layer access control techniques using AI 

9. AI-based application-aware RAN optimization 

10. AIOps for autonomous networks 

11. Logic-oriented generative AI technology for autonomous networks 

12. In-network learning for distributed RAN AI ~Distributed LLMs via latent 

structure distillation~ 

AI/ML for radio propagation and digital twin 

13. Throughput prediction technology for 28-GHz channels using physical space 

information 

14. AI/ML-based radio propagation prediction technology 

15. AI-based radio propagation modeling for wireless emulator 

16. 6G simulator utilizing future prediction control technology based on AI/ML 

17. Optimization of 6G radio access using digital twin 

18. Digital-twin for and by Beyond 5G 

Network architecture for AI/ML usage in RAN 

19. Task-oriented 6G native-AI network architecture 
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II-1.  Scalable AI/ML for Radio Cellular Access 

Andres Arjona, Nokia 

Hideaki Takahashi, Nokia 

 

Abstract— Wireless networks are expected to move towards self-sustaining networks 

in 5G-Advanced and in 6G, where Artificial Intelligence (AI) and Machine Learning (ML) 

play a critical role in maintaining high performance in dynamically changing 

environment.  AI/ML solutions that operate separately at the device or network side, or 

jointly on both will emerge. Similarly, lifecycle management procedures will be needed 

to enable interoperable automation in the radio, providing a framework with the 

necessary tools for deploying and operating ML solutions in radio at scale. 

 

II-1.1.  Introduction 

We are at the beginning of a revolution in cellular networks as Artificial Intelligence 

(AI) and Machine Learning (ML) for the air interface become integral to cellular 

networks. Although AI/ML is already part of 5G systems, it is currently mostly applied 

to network automation and proprietary Self Organizing Networks (SON) solutions. With 

the advent of 5G-Advanced, and further with 6G, we will see an advanced 

implementation of AI/ML in the RAN and radio interface. The potential benefits of 

AI/ML in the network will be significant. They will boost the performance of the radio 

interface, reduce power consumption, greatly improve the end user experience, and help 

find better performing network parametrization faster. Further, these solutions must be 

both economically and technically feasible to scale. 

In this paper, we present discussion on the importance of standardizing lifecycle 

management procedures relevant to AI/ML, followed by an example of an AI/ML based 

reinforcement learning solution for uplink power control in cellular networks. 

 

II-1.2.  Lifecycle Management for AI/ML 

AI/ML solutions for the air interface [3] can be one-sided, where a given feature 

operates at either the network or device side (e.g., beam prediction, positioning), or two-

sided, where the solution operates jointly in both simultaneously (e.g., device channel 

feedback compression). In this latter example, the ML algorithm is applied at both the 

device and network side for compression and decompression of the channel state 

information. 
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Fig. II-1.2-1: One-sided and two-sided AI/ML solutions in the mobile network air 

interface [3] 

 

Standardization efforts are essential to ensure that different vendors’ ML 

implementations and algorithms for networks and devices can work together in a variety 

of scenarios. Thus, a holistic framework needs to be developed in 3GPP for 5G-Advanced, 

addressing both kinds of AI/ML solutions (one-sided and two-sided) supporting control-

plane signaling between the network and the device for correct and controllable 

operation. This framework shall be applicable to any use case in the air interface, and 

also be the foundation for the AI-native air interface in 6G.  

Specifically, Lifecycle Management (LCM) procedures to enable interoperable 

automation mechanisms in the radio are needed. Including procedures for data collection, 

development and testing, deployment, and operation and monitoring of ML solutions. 

This framework will provide operators, devices, and network vendors the required tools 

for operating ML solutions for radio at scale with guaranteed interoperability. 

Data needs to be collected for training, inference and performance monitoring of the 

ML solutions. Hence, the framework must ensure that operators have control about how, 

what, when, and for which use cases data is collected responsibly, and in compliance 

with local data and privacy regulations. However, a challenge for the ML training data, 

is regarding scalability and access to the data needed in a controlled and efficient manner. 

To this end, the following principles should be followed for training data collection 

procedures: 

• Ensure user security and privacy 

• Make data accessible by the subscribed parties 

• Operator needs to be aware of and control data collection 

• Minimize additional air-interface traffic 

• Design for extensibility and future evolution 
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II-1.3.  Deep Reinforcement Learning for Uplink Power Control 

One important trend in ongoing 6G research is the paradigm shift toward self-

sustainable networks. To this purpose AI and ML technologies can become key 

components in maintaining network performance. 

Reinforcement Learning (RL) is one field in machine learning for decision making that 

can be applied to cellular networks. Use of RL methods can enable use cases in wireless 

communications and radio resource management which are otherwise difficult due to the 

complex nature of the radio environment.  In RL, the objective is to have an agent have 

freedom to learn a solution, where learning of the decisions is carried out via an arbitrary 

function that maximizes a “reward”. Throughout this process the agent learns from the 

reward feedback signal, which reinforces the desired actions and penalizes the undesired 

ones. The agent interacts with the environment by taking an action based on the 

observed environment state.  

The research work in [1], shows RL applied to uplink power control. Outer-Loop Power 

Control (OLPC) in 5G networks relies on tuning two primary parameters, the normalized 

transmit power density P0, and the path-loss (PL) compensation factor αpl. Optimization 

of these parameters is known to be of great importance to reach high uplink performance. 

One approach is to optimize uplink power control via an RL agent for each cell, 

controlling both P0 and αpl parameters within a single neural network rather than 

focusing on P0 alone. However, mitigation actions are needed to cope with behavior 

resulting from multi-agent RL, such as high-power consumption from uncoordinated 

competition among gNBs in the network trying to maximize their own performance. To 

mitigate these issues, cooperative time synchronized reward mechanisms and sharing of 

state information between nearby RL agents can be implemented. Hence, achieving a 

common goal across multiple gNBs. 

The solution in [1] is based on Double Deep Q Network (DDQN), where soft updates 

take place at every training occasion. In this solution, the neural network’s output layer 

is divided in two dimensions, one dedicated for P0, and the other for αpl indices (See Fig. 

II-1.3-1). 3GPP defines 114 values for P0 and 8 values for αpl resulting in 912 possible 

combinations. 
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Fig. II-1.3-1: Multi-Action Neural Network with Two Output Dimensions [1] 

 

OLPC parametrization is the problem of finding a balance between the signal to 

interference plus noise ratio (SINR) and the number of resource blocks needed per 

transmission. If the gNB agents are only aware of their own parametrization and 

performance, such uncoordinated approach leads to a competition where the agents 

increase their transmission power to compensate the interference created by their 

neighboring agents. Hence, the agents should be provided with information that allows 

learning of power settings between gNBs, and that state information is shared between 

neighbors at each training step. Likewise, the reward is the sum throughput per utilized 

resource blocks over the closest neighbors including the agent’s own cell. 

The simulation result in [1] (See Fig. II-1.3-2) shows that maximizing the 

neighborhood reward alone may result in unfair user and cell throughput, as power 

allocations can become widespread. Thus, an alternative is to carry out averaging of the 

ML-suggested actions, which yields a fairer and more uniform power allocation between 

cells. Similarly, co-operation is shown to be essential in multi-agent power control, as 

the co-operation range affects significantly the results. If the co-operation range is too 

high, it leads to noisy rewards which impairs learning, while without co-operation gains 

collapse and DDQN is unable to learn the full effects of its actions.  

Additionally, when evaluated with the exhaustively searched best configuration 

common across all simulation realizations (referred as golden baseline), simulation 

results show that it is possible to achieve ~10% gain in cell throughputs in average, with 

the gain being rather fairly distributed over all UEs within the simulation, showing 

further benefit over traditional parametrization approaches. 
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Fig. II-1.3-2: Simulation results: (left) Average Cell Throughout Gain, where N=2 

refers to learning both P0 and αPL output dimensions; (right) Windowed User 

Throughput Distribution of with different offered loads [1] 

 

II-1.4.  Conclusion 

AI/ML-based solutions have the potential to further extend the boundaries of 

performance of the air interface. However, to deploy AI/ML solutions at scale, 

standardization of LCM framework is needed. Hence, paving the way with work in 5G-

Advanced for AI-native 6G, where AI/ML is considered from the start as a key design 

principle of the system. 

Similarly, 6G development must specify enablers for more dynamic reconfiguration of 

system information parameters. Likewise, more dynamic power control as well as other 

machine learning applications, such reinforcement learning, bring performance beyond 

that of common parameters set over the network. Further, it could be expected that such 

machine learning algorithms will turn to be essential parts of 6G making the paradigm 

shift towards self-sustained networks, where multiple dependent parameters and inter-

connected features must be tuned simultaneously on the fly. 
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II-2.  Study on Training Collaboration at UE- / Network-side for CSI Compression with 

Two-sided AI/ML Model 

Tetsuya Yamamoto, Yasuaki Yuda, Hidetoshi Suzuki 

Panasonic Holding Corporation 

Maki Sugata, Tadashi Yoshida 

Panasonic System Networks R&D Lab. Co., Ltd. 

 

Abstract— In the 3rd Generation Partnership Project (3GPP), the application of 

artificial intelligence / machine learning (AI/ML) to the radio interface has been studied 

since Release 18. Channel State Information (CSI) compression is one of use cases 

studied in 3GPP. CSI compression involves a two-sided model where inference 

processing using AI/ML models is executed on both the user equipment (UE)-side and 

the network (NW)-side, which will be used as a starting point for studying two-sided 

AI/ML solutions in 6G. This paper provides an overview of training collaboration for CSI 

compression using a two-sided model and reports on the performance of several training 

collaboration approaches. 

 

II-2.1.  Introduction 

In the 3GPP, the application of AI/ML to the radio interface has been studied since 

Release 18 [1]. In Release 19, the actual standardization work is on the progress to 

realize use cases, such as beam management, positioning, and CSI prediction, where the 

introduction of AI/ML technologies would be effective, based on the study from Release 

18 [2]. In addition, use case that were not concluded in Release 18 such as CSI 

compression and new use cases are also to be studied in Release 19 [3, 4]. 

CSI compression involves a two-sided model where inference processing using AI/ML 

models is executed on both the UE-side and the NW-side, and how to coordinate training 

between the UE-side and the NW-side is being studied. 

In this paper, we provide the overview of the training collaboration for CSI 

compression using two-sided model and report on the performance of several training 

collaboration approaches being considered in 3GPP Release 19. 

 

II-2.2.  CSI Compression with Two-sided AI/ML Model 

In downlink transmission, the base station (BS) needs to know the reception quality 

and propagation channel information of the UE to perform resource allocation and 

multiple-input multiple-output (MIMO) precoding. In the downlink transmission in new 

radio (NR) interface, the UE measures the reception quality and propagation channel 

state from the reference signal transmitted by the BS and reports the measurement 

results to the BS. This is the reporting of CSI from the UE. 
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CSI reporting overhead is a challenge when the number of antennas and frequency 

resources is increased. To address this overhead, the compression of CSI using AI/ML is 

being considered. Specifically, as shown in Fig. II-2.2-1, the UE compresses the CSI in the 

spatial and frequency domains using an AI/ML model, and reports the compressed 

information to the BS as CSI report. The BS then uses an AI/ML model on the NW-side 

to reconstruct the original CSI from the compressed information, reported by the UE. 

AI/ML models such as convolutional neural networks (CNN) and Transformers can be 

utilized for this purpose [5, 6]. In the studies conducted in Release 18, a reduction in CSI 

overhead of approximately 10% to 60% was observed compared to traditional CSI 

reporting methods i.e., not using AI/ML [7]. 

 

Fig. II-2.2-1: CSI compression with two-sided AI/ML model 

 

II-2.3.  Training Collaboration at UE-side and NW-side 

CSI compression involves a two-sided model where inference processing using AI/ML 

models is executed on both the UE-side and the NW-side. One of the challenges in 

considering the two-sided model is how to coordinate training between the UE-side and 

the NW-side. With this context, several types of training that involve different degrees of 

collaboration between UE-side and the NW-side have been studied in terms of inter-

vendor collaboration complexity, performance, maintainability, and standardization 

impact. In Release 19, in order to alleviate/resolve the issue related to inter-vendor 

training collaboration of AI/ML-based CSI compression using two-sided model, the 

following three directions has been studied. 

⚫ Direction A: Sharing parameters/dataset that enables UE-side offline engineering 

⚫ Direction B: Sharing NW-side encoder parameter to UE-side for UE-side inference 

directly with on-device operation 

⚫ Direction C: Fully standardized reference model(s) and parameters with specified 

encoder and/or decoder part 

In addition, for Direction A, two types of information sharing have been studied. 

⚫ Direction A-1: Encoder parameter exchange, with target CSI 

⚫ Direction A-2: Dataset exchange (i.e., target CSI and CSI feedback) 

Direction A-1 is the training collaboration option with standardized reference model 

structure and parameter exchanges with target CSI between NW-side and UE-side. 

Parameters and target CSI received at the UE-side goes through offline engineering at 

CSI report
(Compressed CSI)

Spatial 
domain

Compressed 
CSI

Reconstructed 
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the UE-side (e.g., UE-side over-the-top (OTT) server). Offline coordination between either 

NW-side and UE-side or intra-vendor entities is alleviated or not necessary if the model 

structure can be specified, and parameter exchange is via standardized signaling. One of 

potential issues is how the mismatch between NW-side data distribution and UE-side 

data distribution impacts on the performance. For example, AI/ML models trained at NW-

side may not reflect data distribution with respect to UE-specific conditions, such as UE 

antenna configuration, implementation-specific demodulation algorithms, etc. The AI/ML 

model working environment of these conditions should be ideally same between the 

training and inference. We evaluate the performance impact due to the mismatch 

between NW-side and UE-side data distribution on Direction A-1 in Section 4.1 and 

showed that Direction A-1 can address the performance impact due to NW / UE data 

distribution mismatch with respect to UE-specific conditions. 

Direction A-2 is the training collaboration option with dataset exchange between NW-

side and UE-side. The exchanged dataset includes target CSI and CSI feedback. This 

option allows each UE/chip set vender of UE-side designs their algorithm with the help 

of NW-specific information. Since dataset is delivered to UE-side instead of model 

structure and/or parameters, there is uncertainty on the reference model expression. 

Therefore, combination with Direction C may be necessary to alleviate the burden of 

inter-vendor collaboration and/or offline engineering to align model structure between 

NW-side and UE-side. 

Direction B is the training collaboration option with standardized reference model 

structure and parameter exchanges between NW-side and UE-side. In addition, 

parameters received at the UE are directly used for inference at the UE without offline 

engineering, with on-device operations. For Direction B, UE-side model switching only 

includes the updating parameters, while model training is not needed. On the other hand, 

this direction may not allow device specific optimization compared to Direction A. The 

potential issue would be how to provide same working environment, i.e., the 

parameters/conditions that shall be considered for inference encoder training should be 

aligned between NW and UE, resulting in potential inter-vendor collaboration effort or 

more standardization effort. 

In Direction C, reference AI/ML model is standardized with the actual implementation 

of AI/ML models on the UE-side and NW-side based on these reference AI/ML models. It 

can eliminate the inter-vendor collaboration complexity if feasible for specification. One 

of issues is reference AI/ML models trained using statistical channel models may not be 

suitable for real field environments. We evaluate the performance impact due to 

mismatch between the distribution of the dataset used for reference model training, UE-

side data distribution, and NW-side data distribution on Direction C in Section 4.2 and 

showed that fully specified model in Direction C may have limited performance in the 
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field, but the performance may be improved at least if either side train their part of model 

using field data. 

Table II-2.3-1 are summarized our views on the comparison of directions. 

Table II-2.3-1: Comparison of directions 

 Inter-vendor 

collaboration 

Performance Maintainability  Standardization 

Direction 

A-1 

Feasible, or 

complexity is 

alleviated. 

Good Allowing UE-side and NW-

side to develop/update 

models separately 

Feasible 

Direction 

A-2 

Complexity is 

alleviated.  

May be worse without backbone 

structure alignment 

Allowing UE-side and NW-

side to develop/update 

models separately 

Feasible 

Direction 

B 

Large 

complexity to 

align the same 

working 

environment 

Unclear whether the 

performance impact due to NW-

side data distribution and UE-

side inference data distribution 

mismatch can be addressed. 

Only NW-side can 

develop/update the model. 

Not feasible for UE-side 

Feasible but more 

standardization 

effort 

Direction 

C 

Feasible Limited compare with other 

directions 

Allowing UE-side and NW-

side to develop/update 

models separately 

Feasible 

 

II-2.4.  Performance Evaluation 

II-2.4.1.  Direction A-1 

Assuming that the reference model structure is standardized, we consider the 

following procedure for NW-side and UE-side training as shown in Fig. II-2.4.1-1. 

⚫ Step 1: NW-side trains the encoder (which is not used for inference) and decoder 

jointly. 

⚫ Step 2: After NW-side training is finished, NW-side shares UE-side with encoder 

parameters of the trained encoder model and target CSI (Dataset A) used in the 

NW-side training. 

⚫ Step 3: UE-side first develop a nominal decoder against the exchanged encoder 

using encoder parameters and target CSI exchanged from NW-side. 

⚫ Step 4: UE-side develops actual encoder against the nominal decoder using the 

target CSI measured at UE-side (Dataset B). 

In order to investigate the performance impact on UE-side / NW-side data distribution 

mismatch with respect to UE-side additional condition, we consider NW-side data 

(Dataset A) and UE-side data (Dataset B) are mismatched in terms of UE-side antenna 

configuration. Dataset A and Dataset B are constructed as follows. Detailed parameters 

for evaluation conditions are shown in Table II-2.4.1-1. 

⚫ Dataset A: 3 types of UE antenna configurations, (𝑀, 𝑁, 𝑃, 𝑀𝑔, 𝑀𝑔; 𝑀𝑝, 𝑁𝑃) = (1, 2, 

2, 1, 1, 1, 2), (2, 1, 2, 1, 1, 2, 1), and (2, 2, 1, 1, 1, 2, 2) are assumed. 

⚫ Dataset B: Only 1 type of UE antenna configuration, (𝑀, 𝑁, 𝑃, 𝑀𝑔, 𝑀𝑔; 𝑀𝑝, 𝑁𝑃) = 

(1, 2, 2, 1, 1, 1, 2) is assumed. 
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Fig. II-2.4.1-1: Training collaboration procedure in Direction A-1 

Table II-2.4.1-1: Evaluation assumptions  

Parameter Value 

Scenario Dense urban macro 

Frequency range 2 GHz 

Inter-BS distance 200 m 

Channel model According to TR 38.901 

Antenna setup and port layouts at gNB 32 ports: (8, 8, 2, 1, 1, 2, 8), (𝑑𝐻, 𝑑𝑉) = (0.5, 0.8)𝜆 

Antenna setup and port layouts at UE 4 Rx: 

For Dataset S and A: (1, 2, 2, 1, 1, 1, 2), (2, 1, 2, 1, 1, 2, 1), and (2, 

2, 1, 1, 1, 2, 2), (𝑑𝐻, 𝑑𝑉) = (0.5, 0.5)𝜆 

For Dataset B: (1, 2, 2, 1, 1, 1, 2), (𝑑𝐻, 𝑑𝑉) = (0.5, 0.5)𝜆 
Note: Antenna configuration is indicated as (𝑀 , 𝑁 , 𝑃 , 𝑀𝑔 , 𝑀𝑔 ; 𝑀𝑝 , 𝑁𝑃 ), 

where 𝑀 and 𝑁 are the number of vertical, horizontal antenna elements 

within a panel, 𝑃 is number of polarizations, 𝑀𝑔 is the number of panels in 

a column, 𝑁𝑔  is the number of panels in row; and 𝑀𝑃  and 𝑁𝑝  are the 

number of vertical, horizontal TXRUs within a panel and polarization. 

BS antenna height 25 m 

UE antenna height and gain Follow TR 36.873 [8] 

Numerology Slot / non-slot 14 OFDM symbol slot 

SCS 15 kHz 

Simulation bandwidth 10 MHz 

UE distribution Dataset S: 80 % indoor (3 km/h), 20 % outdoor (30 km/h) 

Dataset A, B: 100 % outdoor (30 km/h), various LOS/NLOS ratios 

(100:0, 40:60, and 20:80) for outdoor UEs are considered. 

Feedback assumption Ideal 

Channel estimation Ideal 

Rank number 1 

CSI compression model Transformer [5, 6] 

Dataset size for training and inference For Direction A-1 

⚫ 300,900 for NW-side training, UE-side nominal decoder 

training 

⚫ 150,450 for UE-side encoder training 

⚫ 39,900 for inference 

For Direction C 

⚫ 300,900 for training Dataset S 

⚫ 150,450 for training Dataset A and B 

⚫ 39,900 for inference 

Encoder
(trainable)

Decoder
(trainable)

Training
(Step 1)

Encoder_A Decoder_A

Encoder_B Decoder_A

Encoder and decoder generated in Step 4 and Step 1
are used on UE-side and NW-side, respectively.

Dataset A
(NW-side)

Vin

VFB
Vout

Parameter sharing {WENC, Vin}
(Step 2)

Decoder
(trainable)

Encoder_A
(Frozen)

Training
(Step 3)

Dataset A 
(Vin)

Nom_Decoder
(Frozen)

Encoder_A
(Tranable)

Training
(Step 4)

Dataset B
(UE-side)

Nom_DecoderEncoder_B
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We consider the following three cases. 

⚫ Case 1A: An encoder-decoder pair is trained in Dataset B. This serves as an upper 

bound. 

⚫ Case 1B: NW-side trains a decoder based on Dataset B, and UE-side trains an 

encoder based on Dataset B. 

⚫ Case 2: NW-side trains a decoder based on Dataset A, and UE-side trains an 

encoder based on Dataset B. 

⚫ Table II-2.4.1-2 shows the squared generalized cosine similarity (SGCS), which 

represents the similarity between the reconstructed and original CSI. From the 

comparison between Case 1A and Case 1B, Direction A-1 can achieve almost the 

same performance as joint training if data distribution between NW-side offline 

training and UE-side offline training is aligned. From the comparison between 

Case 1 and Case 2, Case 2 cause performance loss due to data distribution 

mismatch between Dataset A and Dataset B. On the other hand, in terms of UE-

specific condition of antenna layout/configuration, the performance loss is small if 

Dataset A for NW-side training includes Dataset B. 

Table II-2.4.1-2: Performance of Direction A-1 

Case Notes SGCS by inference on Dataset B 

(Performance loss from upper bound) 

LOS: 100% LOS: 40% LOS: 20% 

1A The encoder-decoder pair is jointly trained based 

on training Dataset B (upper bound). 
0.9428 0.7730 0.7233 

1B NW-side trains a decoder on Dataset B. 

UE-side trains a nominal decoder and an encoder 

based on Dataset B. 

0.9383 

(0.48%) 

0.7721 

(0.12%) 

0.7228 

(0.08%) 

2 NW-side trains a decoder on Dataset A. 

UE-side trains a nominal decoder based on 

Dataset A, and then, UE-side trains encoder 

based on Dataset B. 

0.9407 

(0.22%) 

0.7680 

(0.54%) 

0.7155 

(1.09%) 

 

II-2.4.2.  Direction C 

Assuming that the trained reference model is standardized, we compared the impact 

on CSI reconstruction accuracy in case where the dataset distributions are different 

between the reference model training and the inference phases. We consider the following 

four scenarios as shown in Fig. II-2.4.2-1: a) without retraining, i.e., reference model, b) 

retraining the AI/ML model only on the UE-side, c) retraining AI/ML model only on the 

NW-side, and d) retraining AI/ML model independently on both the UE-side and NW-

sides. 

The evaluation conditions are shown in Table II-2.4.1-1. The dataset for reference 

model training (Dataset S) is based on a dense urban macro scenario with a UE 

distribution of {80% indoor, 20% outdoor}. In addition, 3 types of UE antenna 

configurations are assumed. For retraining and inference, Dataset A is used for NW-side 
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retraining and Dataset B is used for UE-side retraining, whose dataset construction is 

same as in Section 4.1. 

 

(a) Training of reference model            (b) Retraining on the UE-side only 

 

(c) Retraining on the NW-side only       (d) Retraining on the UE-side and NW-sides. 

Fig. II-2.4.2-1: Retraining of the reference model 

Table II-2.4.2-1: Performance of finetuning encoder and decoder under Direction C 

 SGCS by inference on Dataset B 

(Performance loss from upper bound) 

LOS: 100% LOS: 40% LOS: 20% 

The model is trained based on training Dataset 

B (upper bound). 
0.9437 0.7701 0.7234 

The specified model is trained based on training 

Dataset S. 

0.9238 

(2.12%) 

0.7484 

(2.83%) 

0.6896 

(4.67%) 

Encoder model is trained against the specified 

decoder model using Dataset B. 

0.9290 

(1.56%) 

0.7536 

(2.16%) 

0.6959 

(3.81%) 

Decoder model is trained against the specified 

encoder model using Dataset A. 

0.9335 

(1.08%) 

0.7563 

(1.80%) 

0.6992 

(3.34%) 

Encoder / decoder model is separately trained 

against specified decoder / encoder model using 

Dataset B (at UE-side) and Dataset A (at NW-

side). 

(No inter-vendor collaboration) 

0.9320 

(1.24%) 

0.7541 

(2.09%) 

0.6968 

(3.69%) 

 

Table II-2.4.2-1 shows the SGCS value under Direction C. For comparison, the 

inference results using AI/ML model trained on the inference dataset is also shown. 

AI/ML model without retraining shows performance degradation due to the mismatch in 

dataset distribution. Performance improvements can be observed when the UE-side or 

Ref. Enc.
(trainable)

Ref. Dec
(Frozen)

Tuned Enc. Ref. Dec.

Dataset B
(UE-side)

Encoder
(trainable)

Decoder
(trainable)

Training

Ref. Enc Ref. Dec

Dataset S
(Synthetic)

Training

Ref. Enc.
(Frozen)

Ref. Dec
(trainable)

Ref. Enc. Tuned Dec. Tuned Enc. Tuned Dec.

Encoder and decoder generated in (b) and (c) are 
used on UE-side and network-side, respectively.

Training Dataset A
(NW-side)
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NW-side retrains using datasets that match the inference environment. The performance 

improvement by retraining on the NW-side only is larger than that by retraining on the 

UE-side only due to the decoder having more layers and parameters. The improvement is 

limited when the UE-side and NW-side retrain independently without coordination. This 

suggests that when retraining models on both the UE-side and NW-side, it is necessary 

to share the retraining results from the NW-side with the UE-side, resulting in the 

necessity of Direction A with the combination with Direction C. 

 

II-2.5.  Conclusion 

We introduced three approaches for training collaboration of AI/ML-based CSI 

compression using a two-sided model, which will be used as a starting point for studying 

two-sided AI/ML solutions in 6G. Computer simulations show that performance 

improvements can be achieved by retraining models on both the UE-side and NW-side 

while suggesting that sharing retraining results between the NW-side and UE-side is 

necessary for improving the performance, highlighting the potential need for a 

combination of Direction A and Direction C. Performance investigation of Direction A-2 

is left as our future study. 
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Abstract— For 6G, the use of AI/ML is one of the key technologies and its application 

to the air interface is being widely considered. This paper introduces the proof-of-concept 

(PoC) for AI-native air interface (AI-AI) which utilizes AI/ML for some functions of the 

air interface for 6G. The AI-AI PoC is tested in an indoor environment, and the 

throughput improvement by AI-AI is confirmed. In addition, tests using a channel 

emulator confirmed that AI-AI can further improve throughput in a high-speed mobile 

environment. 

 

II-3.1.  Introduction 

The application of AI/ML (Artificial Intelligence / Machine Learning) technology to 

wireless communications have been widely studied, and a vision called AI-native air 

interface (hereinafter referred to as AI-AI) has been proposed in which AI/ML will be 

used to optimize the air interface end-to-end [1, 2, 3]. In the 3GPP Release 19 currently 

under discussion, beam management, positioning, CSI feedback, etc. are being studied 

as a first step in applying AI/ML to the air interface [4].  AI/ML technology will continue 

to be one of the key topics in 6G, and AI/ML will be used in a lot of air interface functions.  

Nokia, SKT, DOCOMO and NTT are collaborating on the development of AI-AI proof-

of-concept (PoC) [5]. We tested the AI-AI PoC, which utilizes AI for some functions of the 

air interface, in a real environment. This paper shows the results of the throughput 

performance of AI-AI. 

 

II-3.2.  AI-AI PoC System 

In the proposed AI-AI PoC system (hereinafter referred to as proposed scheme), the 

transmit constellations and the receiver that handles channel estimation, equalization, 

and demodulation are jointly learned as shown in Fig. II-3.2-1 [6]. In the training, the 

simulation data of several propagation environments shown in Table II-3.2-1 are used. In 

addition, the signal-to-noise ratio (SNR) is randomized between 0 and 20 dB and these 

random parameters are generated for each frame. The constellations learned by the  
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Fig. II-3.2-1. System model of the proposed AI-AI PoC system. 

 

 

Fig. II-3.2-2. Schematic diagram of the OFDM slots for throughput calculation. 

 

proposed scheme are typically non-uniform patterns as shown in the example in Fig. II-

3.2-1. In the receiver, convolutional neural network (CNN) is used to estimate the log-

likelihood ratio (LLR) based on the received symbols [7]. In the system, the conventional 

5G NR-based scheme (hereinafter referred to as conventional scheme) transmits DM-RSs 

(DeModulation-Reference Signals) in 2 or 3 OFDM symbols in one slot, while the proposed 

scheme does not because there is no explicit channel estimation process. Also, neither 

scheme uses the first symbol for data transmission.  

The proposed scheme can transmit data using all available resources, without having 

to transmit DM-RS, which is expected to improve throughput. In addition, the proposed 

scheme learns at velocities up to 200 km/h. Therefore, the proposed scheme does not suffer 

from the degradation of the accuracy of the channel estimate as occurs in conventional 

scheme, and further performance improvement can be expected in high-speed mobile 

environments. In the tests of AI-AI PoC, the throughput is measured as calculated by the 

following equation,  

 

CP data …30 kHz

Tsym

Tslot

…

CP data CP data…CP data CP DM-RS
… …
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Table II-3.2-1. Simulation parameters for training 

Channel model 3GPP TDL-A, TDL-B, TDL-C 

Velocity 0~200 km/h 

Delay spread 10~500 ns 

SNR 0-20 dB 

 

Table II-3.2-2. Specifications of the test 

Center frequency 4.8 GHz 

Subcarrier spacing 30 kHz 

Number of subcarriers 300 

MCS index 5~10 (16QAM) 

 

𝐶 =  𝐶𝑚𝑎𝑥  (𝑇𝑠𝑦𝑚 ∙ 𝑁𝑑𝑎𝑡𝑎 𝑇𝑠𝑙𝑜𝑡⁄ ) (1－𝑃𝐵𝐿𝐸𝑅) , (1)

𝐶𝑚𝑎𝑥 = 𝑆𝐶𝑆 ∙ 𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∙ 𝑄𝑚 ∙ 𝑅, (2)
 

where 𝑇𝑠𝑦𝑚, 𝑁𝑑𝑎𝑡𝑎 , 𝑇𝑠𝑙𝑜𝑡  and 𝑃𝐵𝐿𝐸𝑅 are the OFDM symbol duration, the number of data 

symbol within a slot, the slot duration and block error rate, respectively, as shown in the 

schematic diagram in Fig. II-3.2-2. 𝐶𝑚𝑎𝑥 is the maximum throughput determined by the 

MCS (Modulation Coding Scheme), and 𝑆𝐶𝑆, 𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 , 𝑄𝑚  and 𝑅  are the sub-carrier 

spacing, the number of sub-carriers, the modulation order and the coding rate, 

respectively. The specifications of the tests are shown in Table II-3.2-2. In the tests, the 

MCS index for 16QAM specified by 256QAM index table of 3GPP is employed [8]. 

 

II-3.3.  Indoor Test of AI-AI PoC 

This section shows the indoor tests of AI-AI PoC in real environments. Fig. II-3.3-1 

shows a schematic diagram and pictures of the AI-AI PoC system. In the test, the 

baseband processing is implemented in the GPU server and a software-defined radio is 

used to transmit and receive signals. For the transmitting and receiving antenna 

omnidirectional antennas are used. Fig. II-3.3-2 and II-3.3-3 show the schematic diagram 

and picture of the test environment, respectively. In this test, throughputs are measured 

at the six fixed points indicated by the red dots in Fig. II-3.3-2 in a static test, while in a 

dynamic test throughputs are measured while moving at walking speed along the 

measurement routes 1 to 5. The number of DM-RSs is 2 OFDM symbols within a slot and 

MCS index is 5 in the tests. In the static test, no block errors occurred at any 

measurement points for both the conventional scheme and the proposed scheme, and 

consequently the throughput improvement obtained from the ratio of the number of data 

symbols and block error rate between the proposed and conventional scheme is 18% by 

excluding DM-RSs. In the dynamic test, the block error rate of the proposed scheme is 

slightly higher than that of the conventional scheme, but the throughput improvement of 

the proposed scheme is 6 ~ 16 % as shown in Fig. II-3.3-4. 
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Fig. II-3.3-1. Schematic diagram and pictures of AI-AI PoC system. 

 

 

Fig. II-3.3-2. Schematic diagram of the indoor test environment. 

 

 

Fig. II-3.3-3. Picture of the indoor test environment. 
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Fig. II-3.3-4. Throughput improvement by the proposed scheme. 

 

II-3.4.  Test of AI-AI PoC in Mobile Environments Using a Channel Emulator 

This section shows the test of AI-AI PoC in mobile environments using channel 

emulator which is connected between the transmitter and receiver as shown in the Fig. 

II-3.4-1. In this test, the performance at speeds of 3 km/h and 120 km/h are measured, 

and the channel model of WLAN-B is used as it is different from the channel models used 

for learning [9]. Fig. II-3.4-2 shows the measurement results of throughput versus 

required SNR if the MCS index for 16QAM is varied. In this figure, the measurement 

values of throughput and required SNR are plotted when the block error rate (BLER) 

equals 10−1  at each index. For comparison, the characteristics of the conventional 

scheme in which 3 symbols of DM-RS are inserted are also shown in Fig. II-3.4-2. The 

figure shows that the proposed scheme has improved throughput compared with the 

conventional scheme. In particular, when comparing the results of 3 km/h and that of 

120 km/h, the performance of conventional scheme deteriorates because it becomes 

difficult for channel estimation to follow the time variation of the channel, but the 

performance of the proposed scheme does not show significant degradation. For example, 

when the SNR is approximately 15 dB at 120 km/h, the proposed scheme operates with 

MCS index = 8 whereas the conventional scheme operates with MCS index = 7. In this 

case, the proposed scheme can improve the throughput by about 47% compared with the 

conventional scheme. 
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Fig. II-3.4-1. Schematic diagram and pictures of AI-AI PoC system with channel 

emulator. 

 

 

Fig. II-3.4-2. Throughput versus required SNR 

 

II-3.5.  Conclusion 

In this paper, we presented test results for the AI-AI PoC, confirming its effectiveness. 

In the indoor tests, AI-AI improved the throughput by 6 ~ 18 % compared to the 

conventional 5G-NR-based scheme. In addition, in the channel emulator tests, it was 

confirmed that AI-AI can improve the throughput by about 47% in high-speed mobile 

environments. In the future, we will test the AI-AI PoC in a variety of different 

environments, including outdoor experiments. 
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Abstract— We present a hardware-efficient neural network-based digital 

predistortion (DPD) approach for millimeter-wave and terahertz power amplifiers using 

DeepShift. By replacing multiplications with bitwise-shift and sign operations, our 

method reduces power consumption by up to 196 times in FPGA and 24 times in 45nm 

CMOS while maintaining comparable Error Vector Magnitude (EVM) performance. 

Experimental results with 4.8GHz bandwidth signals demonstrate EVM improvements 

from 23.96% to 10.23% for millimeter-wave and 55.25% to 20.93% for terahertz power 

amplifiers. Our DeepShift-based DNN implementation achieves these results with zero 

multipliers, offering a practical solution for Beyond-5G systems requiring wide-

bandwidth nonlinearity compensation. 

 

II-4.1.  Introduction 

The evolution of mobile communications toward Beyond-5G and 6G systems demands 

wider bandwidth operations in millimeter-wave and terahertz bands. At these higher 

frequencies, power amplifier (PA) nonlinearity becomes a critical challenge, significantly 

degrading system performance. This degradation is particularly severe in higher 

frequency bands due to physical device constraints, leading to more pronounced 

nonlinearity effects. While PA characteristics can be improved through hardware 

optimization, such improvements often result in reduced power efficiency. 

Digital predistortion (DPD) has emerged as a key technique for nonlinearity 

compensation, applying inverse characteristics to the input signal to counteract PA 

distortion. Traditionally, DPD has employed polynomial models such as memory 

polynomials (MP) [1], where PA behavior is expressed as a series of Volterra kernels with 

different nonlinear orders. These models consider past inputs (memory effects) that 

influence current output. However, as communication systems expand into wider 

bandwidths, the complexity of nonlinear distortion increases, making polynomial-based 

compensation insufficient.  

Recently, neural networks (NNs) have been proposed for application in DPD to model 

complex distortions that occur in wideband systems. Multilayer perceptrons (MLPs) are 

often used due to their ease of implementation and learning algorithms; based on MLPs, 

real-valued time-delay neural networks (RVTDNN) [2] have been proposed, which 

decompose complex signals into real-valued in-phase and orthogonal components and 

use real-valued learning algorithms RVTDNN takes into account the memory effect of 
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PA by simultaneously using current and past instantaneous inputs in the input layer. 

In addition, deep neural networks (DNNs), RVTDNNs with multiple hidden layers, have 

also been studied to capture more complex nonlinear behavior. While these networks 

achieve excellent modeling performance, their implementation complexity, particularly 

the numerous floating-point multiplications, poses significant hardware challenges. 

In this paper, the performance of NN-based nonlinear distortion compensation in the 

millimeter-wave PA and terahertz bands is evaluated experimentally, and efforts to 

reduce implementation cost by replacing NN multiplication with bit shift and sign 

operations for the implementation of NN nonlinear distortion compensators are also 

described. 

 

II-4.2.  Neural Network DPD Architecture 

This paper employs direct learning [3] as the learning method for neural network-

based nonlinear distortion compensation. Direct learning first models actual PA 

operation and then uses this neural network model to train another neural network model 

for DPD. We use two architectures: a RVTDNN with one hidden layer and a DNN with 

three hidden layers, both using simple fully connected layers. Figure II-4.2-1 shows the 

RVTDNN architecture. The NN inputs include delayed input signals to the PA, with I/Q 

signals used as real values. The output predicts and outputs the I/Q signal values of the 

PA output. Delayed signals are included in the input to model memory effects, where PA 

output is influenced by past input signals. In our evaluation, hidden layers have twice the 

number of neurons as the input layer, and tanh is used as the activation function. 

 

Fig. II-4.2-1. RVTDNN architecture showing the network structure with delayed input 

signals and I/Q signal processing. 

 

II-4.3.  DeepShift 

DeepShift is a technique that replaces multiplication operations in neural networks with 

bit shifts and sign inversions [4]. Figure II-4.3-1 shows an example of operation 

replacement in DeepShift. The core concept is replacing multiplications with bit shifts 
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by expressing weights as powers of 2. This approach significantly reduces computational 

complexity and power consumption since bit operations are much simpler to implement 

in hardware compared to floating-point multiplication. Specifically, bitwise shifts in 

FIX32 implementation have been shown to reduce power consumption by 24 times and 

196 times compared to multiplication in 45nm CMOS technology and FPGA (ZC706), 

respectively [5]. The authors have demonstrated that DeepShift can be applied to power 

amplifier modeling while maintaining performance [6]. 

 

 

Fig. II-4.3-1. Example of multiplication replacement in DeepShift implementation, 

demonstrating conversion from standard multiplication to bitwise-shift operations. 

 

II-4.4.  Measurement Setup 

Experiments were conducted using millimeter-wave and terahertz band PAs. Tables 

II-4.4-1 and II-4.4-2 show the parameters of the OFDM signals and NN parameters used 

in the experiments. The memory depth (number of delay taps) used for the NN input 

signals was 13 for millimeter-wave and 99 for terahertz, with input neuron numbers of 

28 and 100, respectively. Performance metrics include the Error Vector Magnitude 

(EVM) between the actual PA output signal and predicted output. 

 

Table II-4.4-1. OFDM Signal parameters for millimeter-wave and terahertz band 

OFDM testing, showing key configuration for evaluating DPD performance across 

different frequency bands. 

Center Frequency 37.5 GHz (Millimeter-wave), 261.0 GHz 

(Terahertz) 

Number of Subcarriers 19008 

FFT size 32768 

Bandwidth 4.8 GHz 

Modulation Scheme QPSK 
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Table II-4.4-2. Neural network training configuration parameters, detailing 

optimization settings and DeepShift specifications for both frequency bands. 

Stochastic Gradient Descent Method Adam optimization 

Loss Function Mean Square Error 

Mini-batch Size 1024 

Number of Epochs 100 (Millimeter-wave), 200 (Terahertz) 

Training Symbols 5 OFDM symbols 

Learning Rate Initial value: 0.005 (Millimeter-wave), 

0.001 (Terahertz) 

DeepShift Weight Sign part: 1 bit, Bitwise shift part: 4 bit 

 

II-4.5.  Experimental Results 

Tables II-4.5-1 and II-4.5-2 show the results of applying DeepShift-based DPD to 

millimeter-wave and terahertz power amplifiers. The results demonstrate that, 

particularly when using DNN, comparable EVM accuracy to floating-point 

implementation can be achieved even when applying DeepShift to replace NN 

multiplications with bit shifts and sign operations. Between DNN and RVTDNN, DNN 

shows less EVM degradation when applying DeepShift, likely due to its larger scale 

helping mitigate errors from multiplication replacement. 

Comparing millimeter-wave and terahertz compensation performance, the 

performance difference between RVTDNN and DNN is larger for terahertz, indicating 

that terahertz requires more sophisticated models due to more complex distortion. The 

AM-AM characteristics show that compensation suppresses characteristic spreading for 

both millimeter-wave and terahertz, indicating successful mitigation of memory effects. 

The power spectra show improved flatness across frequency bands after distortion 

compensation. 

 

Table II-4.5-1. Performance comparison of nonlinear distortion compensation for 

millimeter-wave power amplifier, showing operation counts and EVM improvement for 

different model architectures. 

Model type EVM [%] Multiplication 
Bitwise 

shift& sign 
Add Activation 

Without DPD 23.96     

RVTDNN 12.37 1680 0 1680 56 

RVTDNN (DeepShift) 14.65 0 1680 1680 56 

DNN 10.13 7952 0 7952 168 

DNN (DeepShift) 10.23 0 7952 7952 168 
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Table II-4.5-2. Performance comparison of nonlinear distortion compensation for 

terahertz power amplifier, demonstrating computational efficiency and EVM 

improvement across different architectures. 

Model type EVM [%] Multiplication 
Bitwise 

shift& sign 
Add Activation 

Without DPD 55.25     

RVTDNN 29.92 20400 0 20400 200 

RVTDNN (DeepShift) 29.96 0 20400 20400 200 

DNN 20.74 100400 0 100400 600 

DNN (DeepShift) 20.93 0 100400 100400 600 

 

  

(a) Without DPD (b) DNN (DeepShift) 

Fig. II-4.5-1. Constellation diagrams for millimeter-wave PA (a) without DPD and (b) 

with DNN using DeepShift, showing improvement in signal quality. 

 

  

(a) Without DPD (b) DNN (DeepShift) 

Fig. II-4.5-2. Constellation diagrams for THz PA (a) without DPD and (b) with DNN 

using DeepShift, showing improvement in signal quality. 
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(a) Millimeter-wave (b) Terahertz 

Fig. II-4.5-3. AM-AM characteristics comparison of input signal, PA output, and 

corrected output with DeepShift applied. 

 

  

(a) Millimeter-wave (b) Terahertz 

Fig. II-4.5-4. Power spectral density comparison of input signal, PA output, and corrected 

output with DeepShift applied. 

 

II-4.6.  Conclusion 

This paper demonstrated nonlinear distortion compensation for millimeter-wave and 

terahertz band power amplifiers with 4.8GHz bandwidth signals. To reduce hardware 

implementation costs, we applied DeepShift, replacing neural network multiplications 

with low-cost bitwise shifts and sign operations. Experimental results confirmed that 

DeepShift implementation achieved EVM accuracy comparable to floating-point 

compensation. Future work includes evaluating DeepShift application to more complex 

neural network models such as RNNs. 
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Abstract— In the sixth-generation mobile communication system (6G) era, high-

frequency bands (e.g., sub-terahertz (sub-THz) bands) show promise for achieving 

extremely high-speed and high-capacity communications. However, it is difficult to 

ensure radio frequency (RF) circuit quality in high-frequency bands compared to lower 

frequency bands below mmWave, and utilizing higher performance and higher quality 

circuits lead to higher costs. Considering the increasing popularity of the high-frequency 

bands, it is vital to achieve low cost while simultaneously ensuring communication 

quality. It is also necessary to optimize the communication quality, cost, and power 

consumption of the whole radio access network (RAN) by considering the diversified 

topology. This paper presents a conceptual overview of our proposed artificial 

intelligence (AI) device calibration and the AI calibration network to optimize 

communication quality and calibration cost based on AI. Further, as a basic examination 

of AI device calibration, we demonstrate a compensation technology for RF impairments 

based on a deep neural network (DNN). 

 

II-5.1.  Introduction 

One of the requirements for sixth-generation mobile communication systems (6G) is 

an extremely high data rate and capacity. Radio access technologies (RAT) to provide 

data rates over 100 Gbps are being discussed as a potential way of meeting this 

requirement. To achieve 100 Gbps, exploiting higher frequency bands between 100 GHz 

and 300 GHz with a wider bandwidth than 5G (e.g., sub-terahertz (sub-THz) bands) is a 

promising approach. However, to utilize the sub-THz bands in 6G, similar to the case 

when introducing the millimeter-wave band in 5G, there are many technical issues that 

need to be resolved by the 2030s. These technical issues are diverse and exist mainly in 

four areas: radio propagation, radio frequency (RF) devices, modulation and 

demodulation schemes, and air interfaces, which are summarized in detail for each area 

in [1].  

Focusing on the technical issues in RF devices, the characteristics of the RF devices 

mainly depend on the frequency band and the signal bandwidth, and it is difficult to 

ensure the same circuit characteristics in the high-frequency bands as those in the low 

frequency [2]. Some RF impairments, such as frequency selectivity, IQ imbalance, direct 

current (DC) offset, carrier leakage, phase noise, and nonlinear distortion, have become 
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increasingly pressing as implementation challenges because they can cause degradation 

of the communications quality. While performance enhancement and high integration of 

the RF devices are required, for the popularization of high-frequency bands, the RF 

devices must be manufactured with a level of accuracy and a cost that enables usage in 

6G commercial services. Cost reduction can be achieved by allowing the use of low-

quality devices, but a calibration scheme by digital signal processing (DSP) is necessary 

for ensuring the communication quality. Although a partial compensation technique for 

the RF impairments by DSP has been proposed, this technique requires designing an 

optimal digital calibration for high-frequency bands, where the influence of each RF 

impairment is both large and mixed. In recent years, technology that compensates for 

multiple RF impairments by utilizing artificial intelligence (AI) such as deep neural 

networks (DNN) has attracted attention [3]. 

The performance of the RF device and the resources (e.g., processor capability and 

power consumption) available for DSP are different for each wireless device. Therefore, 

it is desirable that the cost of digital calibration is dynamically optimized in accordance 

with the constraints of the available hardware and the required quality from the 

applications. In addition, it is necessary to optimize the communication quality, cost, and 

power consumption of the whole radio access network (RAN) by considering the 

diversified topology. In this paper, we present our concept of AI device calibration and 

the AI calibration network [4], which utilizes AI to optimize the communication quality 

and the calibration cost. Also, as a basic technology of AI device calibration, a 

demodulation technology [5] utilizing DNN is introduced. 

 

II-5.2.  Concept of AI Calibration 

II-5.2.1.  AI Device Calibration 

Fig. II-5.2.1-1 shows the concept of AI device calibration. The required specifications 

for the equipment differ between base station (BS) and user equipment (UE), which 

means the characteristics of the RF circuit, the capability of the processor, and the 

allowable power consumption for DSP are also different from each device. On the other 

hand, regarding the communication quality, the total communication quality that can be 

observed end-to-end only needs to meet the requirements. In other words, points such as 

calibrating within the transmitting station to send a high-quality signal, calibrating only 

at the receiving station, setting the proportion of each calibration processing load, etc. 

can be freely designed. In AI device calibration, the existence of digital calibration in 

each station, the compensation scheme to be used, and the level of compensation 

accuracy are dynamically controlled in accordance with the constraint of available 

hardware and the demands of the communication quality. As a case study of a 

compensation scheme, we introduce a DNN demodulator in Section 3.1. 
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Fig. II-5.2.1-1. Concept of AI device calibration. 

 

II-5.2.2.  AI Calibration Network 

In the 6G era, many devices will be connected to the RAN through various frequency 

bands, so the topology of the RAN is expected to diversify. Therefore, new radio network 

topology (NRNT) has been investigated to improve the performance of RAN for 5G 

Evolution and 6G [6]. In NRNT, the topology changes dynamically in accordance with 

the environment, situation, and requirements based on various key performance 

indicators (KPIs). With sub-THz bands, optimization in the whole of RAN including the 

relay station (RS) is required, since the impact on KPIs such as equipment cost and 

power consumption seems to be large. 

Fig. II-5.2.2-1 shows the concept of the AI calibration network. The AI device 

calibration described in Section II-5.2.1 is extended to the entire RAN. The AI calibration 

network collects the resource information such as the performance of the RF devices of 

each equipment, processor capability, and power consumption available for DSP. The 

calibration cost of each device is controlled in accordance with the constraint of available 

hardware and the requirement of communication quality. In addition, appropriate route 

selection is performed for the optimization of the whole network. 

 

Fig. II-5.2.2-1. Concept of AI calibration network. 
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II-5.3.  Compensation Technique based on AI 

II-5.3.1.  Deep Neural Network Demodulator 

In this section, we introduce a technique to compensate for multiple RF impairments 

based on DNN. Fig. II-5.3.1-1 shows the system model of our DNN demodulator. 

Assuming single carrier-(SC) frequency domain equalization (FDE) transmission with 

nonlinear distortion of the amplifier and IQ imbalance of the IQ modulator/demodulator, 

bit detection by DNN is performed for the received symbols after FDE. The FDE output 

is divided into an IQ real valued sequence after IFFT processing and passed to the input 

layer of the DNN. The DNN outputs a vector consisting of values from 0 to 1 via the 

sigmoid function. The DNN is trained to minimize the root mean square error (RMSE) 

of the training data and the output data. Round processing is performed after the DNN, 

and the bit string corresponding to the index of the input data is output. 

 

 

Fig. II-5.3.1-1. System model of DNN demodulator. 

 

II-5.3.2.  Numerical Results 

In this section, we evaluate the effectiveness of the DNN demodulator. Table  lists the 

parameters utilized during learning and validation. The nonlinearity of the power 

amplifier utilizes a Rapp model with the input back off (IBO) of 2 dB. The IQ imbalance 

of the quadrature modulator and demodulator is 1 dB in amplitude and 5° in phase. The 

average signal to noise power ratio (SNR) is 30 dB while learning the DNN. The fading 

channel assumes a static environment and utilizes common values in the learning and 

test data. We use 16-QAM and 64-QAM for the modulation scheme. 

Input

bits

G
e
n

e
ra

te

S
C

 w
a

v
e
fo

rm

IQ

DAC

LO

IQ 

mod.

PA

(Transmitter)

Fading

channel

LO

IQ 

demod.
IQ

ADC

DNN

demod.F
F

T

F
D

E

IF
F

T

… …

Detect

bits

(Receiver)

１

１x

Ｚ

I-ch
Q-ch

Real-valued data

after FDE

In
p

u
t

2
D

 c
o
n

v
.

A
ct

iv
a

ti
o
n

B
a
tc

h
 n

o
rm

.

2
D

 c
o
n

v
.

A
ct

iv
a

ti
o
n

(s
ig

m
o
id

)

O
u

tp
u

t

R
o
u

n
d

 i
n

to

b
in

a
ry

 b
it

s

DNN



 

 

 

 67 

Fig. II-5.3.2-1 shows the bit error rate (BER) performance of the DNN demodulator, 

w/o compensation, and w/o RF impairments of nonlinear distortion and IQ imbalance. In 

w/o compensation, hard decision demodulation is performed after IFFT. Compared to w/o 

compensation, the DNN demodulator improves the BER performance and approaches 

the characteristics of the case without RF impairments. These results demonstrate that 

the communication quality can be improved by using the DNN demodulator for RF 

impairments. 

 

Table II-5.3.2-1. Simulation parameters for training and validation. 

Parameter Value 

Modulation scheme 16-QAM, 64-QAM 

PA Nonlinearity Rapp model[7], p=2,  

IBO=2 dB 

Tx and Rx IQ imbalance Amplitude: 1 dB 

Phase: 5° 

Channel model Static, exponential 

CIR length 4 

Average SNR Training: 30 dB 

Validation: 10 dB – 30 dB 

FFT size 64 

 

 

Fig. II-5.3.2-1. BER performance with PA nonlinearity, IQ imbalance, and fading 

channel. 
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II-5.4.  Conclusion 

To popularize the use of high-frequency bands, it is desirable to optimize the trade-off 

between communication quality and cost reduction in accordance with the application 

requirements. We introduced a conceptual overview of AI device calibration as an 

optimization technology that dynamically controls the calibration cost in accordance 

with the constraint of available hardware and the demand of the communication quality. 

We also proposed an AI calibration network to optimize the device calibration cost across 

the RAN, which is an important KPI in the sub-THz bands. Our findings demonstrated 

the effectiveness of the RF impairment compensation technology based on DNN as a 

basic technology for AI device calibration. 
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Abstract— The ITU-R has defined "AI and Communication" as one of the six usage scenarios 

for 6G systems. However, its KPIs and minimum requirements are yet to be defined. This 

paper describes the "AI and Communication" scenario and the typical AI services in 6G. It 

also introduces general principles for performance definition, and detailed performance 

indicators with the requirements. Then, this provides an evaluation methodology for the 

proposed performance indicators, along with an example of evaluation procedures. 

 

II-6.1.  Introduction 

With rapid development of AI technologies, it becomes an essential feature in 

industries and society. Mobile systems will also revolutionarily be evolved as a unified 

infrastructure that integrates communication and AI that delivers ubiquitous AI 

services in the 6G era.  

This paper aims to provide guidelines for designing 6G systems and ensure users 

receive guaranteed AI services. Specifically, it describes the "AI and Communication" 

scenario defined in the IMT-2030. Next, this summarizes the current status of the 

performance indicators, then, introduces the design principles, the proposed qualitative 

and quantitative performance requirement definitions. Finally, it provides the 

corresponding evaluation methodology with examples. 

 

II-6.2.  AI and Communication 

6G aims to make intelligence inclusive 

by providing AI as a Service (AIaaS). By 

utilizing the data and resources of 

distributed intelligent terminals, 6G will 

provide AI model training services, made 

possible through local training at 

distributed terminals and model 

interaction between them over the 

network. 6G can also provide high-

accuracy inference services for resource-

constrained terminals by joint scheduling Fig. II-6.2.1-1, Usage scenario of IMT-2030 
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of communication and AI resources. This will drive AIaaS to become a typical application 

scenario of 6G.  

 

II-6.2.1.  AI and Communication in the IMT-2030 Framework 

To facilitate the development of IMT-2030 and beyond, the ITU-R WP-5D approved a 

new framework [1]. The six usage scenarios identified by the ITU-R are shown in Fig. II-

6.2.1-1. To support the new usage scenarios, IMT-2030 includes AI- and sensing-related 

capabilities, as listed in Table II-6.2.1-1. The "AI and Communication" usage scenario 

would require high area traffic capacity and user experienced data rates, as well as low 

latency and high reliability. In addition to the communication aspects, a set of new 

capabilities related to the integration of AI functionalities is expected, including data 

acquisition, preparation and processing from different sources, distributed AI model 

training, model sharing and distributed inference across IMT systems. 

 

Table II-6.2.1-1 Capabilities of IMT-2030 

Enhanced Capabilities IMT-2020 IMT-2030 

Peak data rate (Gbps) 20/10 for DL/UL e.g., 50, 100, 200 

User experienced data rate (Mbps) 100/50 for DL/UL e.g., 300, 500 

Spectrum efficiency (bps/Hz) (Peak) 30/15 for DL/UL e.g., x1.5, x3 

Area traffic capacity (Mbps/m2) 10 e.g., 30, 50 

Connection density (devices/km2) 106 106–108 

Mobility (km/h) 500 500–1000 

Latency (ms) 1 0.1–1 

Reliability 1 – 10–5 1 – 10–5 to 1 – 10–7 

New Capabilities of IMT-2030 Value 

Coverage TBD 

Sensing-related capabilities TBD 

AI-related capabilities TBD 

Sustainability TBD 

Positioning (cm) 1–10 

 

II-6.2.2.  Typical Services in the "AI and Communication" Scenario 

IMT-2030 will efficiently support AI applications in an end-to-end manner, connecting 

distributed intelligence to provide ubiquitous AI services. It required to build a 

distributed and efficient AI service platform by utilizing the connection, data, and model 

resources in the network.  
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II-6.2.2.1 An Exemplary AI Application 

Served by IMT-2030, collaborative robots as in 

Fig. II-6.2.2-1 are widely recognized as a future 

6G application scenario that requires AI 

services with low latency and high learning 

and inference accuracy. In this use case, 

multiple robots work together to accomplish 

complex tasks in an industrial environment. 

Through local vision or control models, the 

robots will be able to detect objects from the 

sensed images and plan the path trajectory 

with corresponding control decisions for the 

subtasks. These robots can cooperate with each other over the network to improve the 

performance of local models via collaborative training. 

 

II-6-2.2.2 Model Inference Service 

AI model inference is a fundamental function for AI applications. It takes inputs, runs 

the AI models, and produces the expected outputs. Through ubiquitous connectivity, the 

6G network with native intelligence could provide real-time model inference capabilities 

that meet different requirements. Fig. 

II-6.2.2-2 illustrates a typical AI model 

inference service. In this service, a large 

model may be split into two parts, which 

are deployed on the network and user 

sides and work together.  

 

I-6-2.2.3 Model Training Service 

AI model training is key for obtaining a model with high accuracy. In the large-scale 

distributed AI model training service, the 

network serves as a management platform to 

provide high-speed data channels and 

efficient scheduling mechanisms for 

exchanging data or model parameters 

between distributed terminals. Fig. II-6.2.2-

3 illustrates a typical distributed training 

service. In each round, the distributed 

terminals use local data to train models 

locally and upload the updated models to the 

network for aggregation.  
Fig.II-6.2.2-3 Distributed AI model training service 

Fig. II-6.2.2-2 AI model inference service 

Fig. II-6.2.2-1 AI applications for collaborative 

robots 
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II-6.3.  Performance Requirements for the "AI and Communication" Scenario 

System design is driven primarily by performance requirements, which evolve or 

revolutionize each generation of mobile systems. AI services not only involve 

transmissions, but also include AI-related resources, meaning that AI model 

learning/inference accuracy and latency are the KPIs. From an AI perspective, the 6G 

network should support large-scale distributed learning and real-time inference. The 6G 

network should consider both AI and communication in an integrated manner from the 

beginning.  

 

II-6.3.1.  Current Status 

Conventional mobile communication systems have mainly provided communication 

services. AI&ML features have been studied from Rel-18 such as in TR 22.874 [2]. 

Various applications have also been defined, however, all the AI/ML operations are 

expected to be executed in cloud servers. 6G requires new AI-related capabilities that 

expected to be introduced beyond communication, e.g., supporting AI services. Studies 

[3, 4], the China IMT-2030 Promotion Group and Hexa-X, both identify AI services 

provided by 6G as key factors.  However, the performance indicators are not illustrated 

clearly, and no details are defined for the requirements and evaluation methodology 

toward 6G. The computer science community has defined some AI training and inference 

KPIs to evaluate the capabilities e.g., MLPerf benchmark [5]. However, these KPIs are 

used to measure the hardware or software capabilities in a centralized way, it cannot be 

used to measure the capabilities of distributed AI services. 

 

II-6.3.2.  Principles for Performance Definition for AI and Communication in 6G 

6G AIaaS will provide various AI capabilities that adapt to different application 

scenarios. Accordingly, 6G AIaaS needs to consider integrating communications 

capabilities and AI capabilities in order to build comprehensive performance indicators 

and evaluation methods.  

The main principles of performance definition for AI-related capabilities can be listed; 

⚫ End-to-end AI capabilities. AI services should use end-to-end performance as 

indicators in order to guarantee user-experienced service quality. The AI service 

quality depends on both communication and AI capabilities.  

⚫ Typical services. The IMT-2030 system is the key to realizing ubiquitous intelligence. 

By utilizing the AI capabilities within the network, this system should provide a 

platform for large-scale distributed model training and unified high-accuracy model 

inference. 
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⚫ Core performance. The goal of AI and communication integration is to enable AI 

services efficiently, including model training and real-time high-accuracy model 

inference. To ensure that AIaaS is acceptable to billions of users, it is crucial to focus 

on the key factors that impact the user experience. 

 

II-6.3.3.  Proposed Performance Requirements for AI and Communication in 6G 

The KPIs for AI and communication are defined from the perspective of services 

(including AI model training and inference) provided by 6G networks. The performance 

of such services depends on the AI model capabilities provided by the system's AI 

resources and the communication capabilities. Expected qualitative and three 

quantitative requirements are described below. 

⚫ AI service functionality requirements 

The functionality requirements for AI-related capabilities are that the candidate radio 

interface technologies or sets of radio interface technologies shall have mechanisms 

and/or signaling related to the functionalities, e.g., distributed data processing, 

distributed learning, AI computing, AI model execution, and AI model inference. 

⚫ AI service accuracy (or AI service quality) 

AI service accuracy is defined as the accuracy of the AI inference/learning service. 

Specifically, it is the degree to which the outputs from the AI service are the same as the 

true values for the given inputs within the given service latency requirements. For a 

given AI task, the AI service accuracy depends on the task characteristics, AI model 

deployment method, and AI-related data transmissions.  

⚫ AI service latency 

AI service latency is defined as the time taken from the start to the end of the AI 

inference/learning service. It is the sum of the communication time for AI-related data 

transmissions and the processing time of the AI model, where the processing time 

depends on the devices and implementations.  

⚫ AI service density 

AI service density is defined as the number of AI services that meet given AI service 

accuracy and AI service latency requirements supported by the network simultaneously 

per unit area. It is a system capacity indicator of the IMT-2030 system. For different 

application requirements (i.e., accuracy or latency), the system can support different AI 

service densities. 

 

II-6.4.  Evaluation Methodology and Example 

Service performance is determined by both communication and AI resources and 

should therefore be evaluated with certain communication and AI assumptions. This 
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section will describe the evaluation methodology first and then present an example with 

detailed assumptions and results. 

 

II-6.4.1.  Evaluation Methodology 

The performance requirements can 

be derived from two essential KPIs, 

namely, AI service accuracy and 

latency. AI service accuracy is defined 

as the degree to which the outputs 

from the AI service are the same as 

the true values for the given inputs. 

AI service latency is defined as the 

sum of AI model processing time and 

data transmission time, which also depends on both the AI model and AI-related data or 

model transmissions. The performance evaluation can follow the service procedures. Fig. 

II-6.4.1-1 shows proposed AI service performance evaluation system. The performance 

evaluation includes the following key components: 

● Resource assumptions: The evaluation should be done in a test environment 

similar to the definition in communication performance evaluations [6]. Within the test 

environment, the radio configurations should be provided, including the bandwidth, 

number of antennas at the UE and BS, and so on.  

● AI service procedures: The entire procedures can start from AI model processing 

at the UE where the intermediate data (model output or model weights) is generated. 

Then, this data is transmitted from the UE to the BS under the assumed radio 

configurations. Next, the BS receives the intermediate data and uses the AI model to 

process it in order to get the service results, which are then used to calculate performance 

indicators. 

● AI service performance calculation: The AI service accuracy and latency are 

calculated based on the service results, AI model processing time, and transmission time. 

The AI service accuracy is defined according to the AI task. The AI service latency is the 

sum of the AI model processing time at the UE and BS and the transmission time of 

intermediate data. 

For AI service density evaluation, AI service density is defined as the number of AI 

services that meet given AI service accuracy and latency requirements. This can be 

evaluated through AI service accuracy and latency simulation. For example, we can first 

set the number of served UEs N to a minimum value, and generate service requests from 

the UEs. Then, we use the evaluation parameters of the test environment to perform 

system simulation and collect statistics on the AI service accuracy within the service 

latency. We can gradually increase N and repeat the simulation until the AI service 

Fig. II-6.4.1-1, AI service performance evaluation system 
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accuracy falls below requirements, with the value of N to be 𝑁𝑚𝑎𝑥 . The AI service density 

is calculated as 𝐶 = 𝑁𝑚𝑎𝑥/Converge area. 

 

II-6.4.2.  Evaluation Example 

We use the distributed AI inference service as an example to illustrate the performance 

evaluation methodology presented earlier. The methodology can also be used for 

collaborative training and inference services after the procedures are modified according 

to the corresponding service 

procedures. Suppose, AI-enabled 

robots need to perceive the 

environment through in-factory 

cameras. The images these robots 

collect can be further used to 

achieve real-time high-accuracy AI model inference as in Fig. II-6.4.2-1. The AI inference 

service consists of three steps: 1) the UE uses the UE-side AI model to process the input 

data in order to obtain intermediate data; 2) the UE transmits this data to the BS; 3) the 

BS uses the BS-side AI model to process the received intermediate data and obtain the 

inference results. The following evaluation methodology can also be applied for this 

downlink case. 

● Evaluation configurations: The evaluation configurations are defined as follows, 

with examples given in brackets. 

– Test environment: [Dense Urban] 

– Radio configurations: [ same as immersive communication (e.g., user 

experienced data rate: 500 Mbps)] 

– AI task: [image recognition] 

– AI dataset: [ImageNet-1k validation dataset [7]] 

– AI model: [AlexNet [8], the left part is processed by the UE, and the right part is 

processed by the BS, as shown in Fig. II-6.4.2-2] 

– AI model processing time: [UE: 0.75 ms; BS: 0.45 ms] 

● Evaluation procedures 

– AI service accuracy: AI service accuracy can be evaluated by simulation. The UE 

processes each input of sample 𝑆𝑖 , 𝑖 = 1,⋯ , 𝑛 in the data set based on the UE-side 

AI model, and obtains the intermediate data 𝑍𝑖. 

 

Fig. II-6.4.2-1 Distributed AI inference service example 
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According to the test environment and transmission configurations, the UE sends the 

intermediate data and the BS receives it. Taking a classical transmission scheme as an 

example, the intermediate data is first quantized and represented as bits, which are then 

encoded and modulated to symbols for wireless transmission. The BS processes the 

received intermediate data 𝑧̃𝑖 based on the AI model on the BS side, and obtains the 

inference result 𝑌̃𝑖 corresponding to each 

sample. We can then compare or 

calculate the inference results with the 

target output or label 𝑌𝑖 of each sample in 

order to obtain the degree to which the 

output is the same as the true value 

𝑎𝑐𝑐 =
1

𝑛
∑ 1{𝑌̃𝑖==𝑌𝑖}

𝑛

𝑖=0
, that is, the AI service accuracy. 

For the accuracy of the reference case, we can process each sample 𝑆𝑖 in the dataset 

based on the whole AI model in order to obtain the inference result 𝑌′̃𝑖. We can then 

compare the inference result with the label 𝑌𝑖 of each sample to obtain the output of the 

reference case. The degree to which the output is the same as the true value of reference 

case is 𝑎𝑐𝑐𝑟𝑒𝑓 =
1

𝑛
∑ 1{𝑌′̃𝑖==𝑌𝑖}

𝑛

𝑖=0
. The relative AI service accuracy is calculated as 

𝑎𝑐𝑐/𝑎𝑐𝑐𝑟𝑒𝑓.  

– AI service latency: The AI service latency is the sum of the time used for 

intermediate data transmission, 𝑡𝑐𝑜𝑚  and the UE- and BS-side AI model processing time, 

𝑡𝑝𝑟𝑐_𝑈𝐸 , 𝑡𝑝𝑟𝑐_𝐵𝑆. Therefore, the AI service latency is given by 𝑡𝑠𝑣𝑐 = 𝑡𝑐𝑜𝑚+ 𝑡𝑝𝑟𝑐_𝑈𝐸 + 𝑡𝑝𝑟𝑐_𝐵𝑆. 

In this example, we use the time calculated as the number of payload bits divided by the 

data rate as the data transmission time. The number of payload bits is determined by 

the number of elements in the intermediate data and the number of quantized bits per 

element.  

 

Table II-6.4.2-1 AI service performance evaluation results 

Number of bits per 

element 

 
2 

 
4 

 
6 

 
8 

 
10 

 
12 

 
16 

 
32 

AI service accuracy (%) 
 

0.14 
 

10.35 
 

52.94 
 

56.47 
 

56.53 
 

56.55 
 

56.55 
 

56.56 

Relative AI service 

accuracy (%) 

 
0.24 

 
18.30 

 
93.61 

 
99.84 

 
99.95 

 
99.99 

 
99.99 

 
100 

AI service latency (ms) 
 

1.4 
 

1.6 
 

1.8 
 

1.9 
 

2.1 
 

2.3 
 

2.7 
 

4.2 

 

 

Fig. II-6.4.2-2 AlexNet model deployment example 
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● Evaluation results 

The AI service accuracy and latency under different transmission setups (i.e., number 

of quantized bits per element) are provided in Table II-6.4.2-1. As can be seen from the 

table, there is a trade-off between AI service latency and AI service accuracy due to the 

intermediate data transmission. If a minimum AI service accuracy of 56% with 

maximum AI service latency of 2ms are required (i.e., out target), we need to optimize 

the transmission configurations of 8 bits per element in this example or improve the 

transmission technology to meet both requirements. 

 

II-6.5.  Conclusion 

This paper illustrated the motivations, typical AI services, and performance 

requirements of the "AI and Communication" usage scenario — a new scenario defined 

in IMT-2030 for 6G. To provide guidelines for the system design and better support AI 

services, this proposed new performance indicators that integrate AI and communication 

capabilities and resources in the network, from both the user experience and network 

capacity perspectives. It also provided the corresponding evaluation methodology with a 

detailed example. For further detail of the contexts, the original paper can be seen in [9]. 
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Abstract— Cell-free massive MIMO (CF-mMIMO) is a promising approach for future 

mobile networks, utilizing centralized MIMO processing for densely distributed access 

points (APs). In CF-mMIMO, to reduce the computational load for signal processing 

while meeting throughput demands, user equipment (UEs) are served by APs selected 

as an AP cluster. A significant challenge is AP clustering for each UE, particularly in 

dynamic environments with moving UEs. One approach for optimizing the AP cluster 

involves AI/ML. This paper provides an overview of AP clustering method using deep 

reinforcement learning (DRL) and numerical simulation results. 

 

II-7.1.  Introduction 

A larger-scale distributed MIMO architecture, i.e., cell-free massive MIMO (CF-

mMIMO), has gained attention as a technology capable of providing high radio quality 

throughout an entire area [1]-[3]. In CF-mMIMO, a central processing unit (CPU) 

performs multi-user MIMO processing on radio signals from distributed APs. By 

coordinating signal processing among distributed APs, interference at the cell edges can 

be significantly reduced, ensuring high radio quality throughout the service area. APs 

with weak channel strength do not significantly enhance the radio quality for UEs. In 

AP clustering, APs that enhance radio quality are selected to form AP clusters for each 

UE, and the UE is served only by these selected APs [4]-[6]. This reduces the signal 

processing load since the number of channels involved in the MIMO calculation is limited. 

To reduce the signal processing load while ensuring the required radio quality for each 

UE, selecting AP clusters appropriately, on the basis of the movement of the UE, is 

crucial. Recently, the use of DRL for AP clustering has been explored in [7]-[15]. However, 

scalability continues to be a challenge. In large-scale environments with numerous APs 

and UEs, the computational load of DRL becomes significant. In this paper, we provide 

the overview of scalable AP clustering method with DRL and present the AP clustering 

performance in terms of throughput requirement satisfaction and computational load, 

including signal processing, as well as training and inference in DRL. 

 

II-7.2.  AP Clustering Problem for CF-mMIMO 

We have been researching user-centric radio access network (RAN) architecture to 

ensure consistent radio quality throughout the network area using CF-mMIMO [16]. The 
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user-centric RAN concept involves creating a logical network for each user on a physical 

infrastructure through network virtualization, as illustrated in Fig. II-7.2-1. Virtualized 

CPUs (vCPUs) are deployed for each user on the servers, with APs linked to these servers 

via mobile fronthaul. The vCPU executes multi-user MIMO by using radio signals to and 

from the APs within each user's AP cluster. The radio quality, measured as the signal-to-

interference-plus-noise ratio (SINR), is influenced by the channels of the selected APs in 

the AP cluster and other spatially multiplexed UEs.  

When DRL is applied to AP clustering in large-scale environments, the computational 

load of DRL increases because of two main factors. The first factor is the increase in model 

size. When DRL is used to select the optimal combination of APs and UEs, the size of the 

action space, that is, the number of candidate action combinations, expands exponentially 

with increasing number of APs and UEs. Moreover, as information about the entire area 

is required as an input for the model as states. These result in a larger neural network 

(NN) size in large-scale environments. The second factor is the increase in inference 

frequency. As the wireless environment changes with UE movement, it is necessary to 

dynamically select AP clusters to maintain the radio quality of UEs. Selecting AP clusters 

for all UEs at short intervals increases the overall inference frequency, thereby escalating 

the computational load of inference across the system. 

Our goal is to ensure the required radio quality for each UE with minimal 

computational load even in large-scale environments. To facilitate scalability, an AP 

clustering approach is necessary to suppress the overall computational load, including 

training and inference in DRL, as well as signal processing. 

 

Fig. II-7.2-1: User-centric RAN architecture with CF-mMIMO 
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II-7.3.  Scalable AP Clustering with Distributed DRL 

II-7.3.1.  AP Clustering Architecture 

We propose an AP clustering method with distributed DRL, including the following 

two components. The first component involves distributing per-user models. The learning 

model is designed to determine the increment or decrement of the AP cluster size for a 

single UE. Since APs with higher channel strength enhance radio quality, the 

combination of APs is then selected in descending order of the reference signal received 

power (RSRP) up to the determined AP cluster size. The model dynamically adjusts the 

AP cluster size for each UE. The proposed per-user model maintains a constant size, 

independent of the number of UEs or APs, preventing any increase in model size even in 

large environments. To achieve real-time AP clustering with high learning efficiency, the 

per-user model is distributed and processed in parallel. We use Ape-X [17], a distributed 

learning method for DRL. Fig. II-7.3.1-1 illustrates the proposed AP clustering 

architecture. In Ape-X, agents are divided into actors and learners. Multiple actors 

observe the state of the environment and determine actions in parallel via a common 

learning model provided by the learner. The learner performs training and updates the 

model from experiences generated in parallel by multiple actors.  

The second component involves assigning UEs to the actors. If an actor is launched for 

each UE and performs inferences with a short cycle, the overall inference frequency 

increases, especially in large-scale environments with many UEs. For fast-moving UEs, 

a short AP cluster update interval is necessary to maintain radio quality. However, for 

slow-moving UEs, longer intervals do not significantly impact radio quality. Therefore, as 

shown in Fig. II-7.3.1-1, we introduce an actor allocator (AA) to assign multiple slow-

moving UEs to the same actor. Since the learning model operates on a per-user basis, the 

actor with multiple UEs assigned performs inference sequentially. This increases the AP 

cluster update interval for the UEs. To avoid throughput degradation, the maximum 

update interval that does not degrade the radio quality is defined as the threshold interval. 

UEs are assigned to actors under the constraint that their AP cluster update interval does 

not exceed the threshold interval, minimizing the number of actors. This approach 

reduces the computational load of inference by relaxing the inference frequency. 
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Fig. II-7.3.1-1: AP clustering architecture with distributed DRL 

II-7.3.2.  MDP Model 

The design goal of the Markov decision process (MDP) model is to control the AP 

cluster size for a single UE to meet throughput requirements with the minimum AP 

cluster size. The action, reward, and state in the MDP model are defined as follows: 

 

1) Action 

The action specifies the increment or decrement in the AP cluster size. The action for 

UE 𝑘 is defined as 𝑎𝑘 = 𝛿𝑘 ∈ {−𝑒, −𝑒 + 1,… ,0 , … , 𝑒 − 1, 𝑒}. Here, 𝛿𝑘 represents the change 

in the AP cluster size for UE 𝑘 from the previous time step. 𝑒 denotes the maximum 

change in the AP cluster size in one time step. The AP cluster size |ℳ𝑘| is determined as 

|ℳ𝑘|= 𝛿𝑘 + |ℳ𝑘|
pre, where |ℳ𝑘|

pre represents the AP cluster size at the previous time 

step. The size of the action space |𝐴𝑘| is  2𝑒 + 1.  

 

2) Reward 

We use the following reward 𝑟𝑘, which consists of two factors: throughput satisfaction 

and the AP cluster size. 

𝑟𝑘 = 𝑞𝑘 ×𝑚𝑘

where 𝑞𝑘 and 𝑚𝑘 are defined as: 

𝑞𝑘 = {
1, 𝑔𝑘 ≥ 𝑔̃𝑘 ,

0, otherwise.
,       𝑚𝑘 = (1 −

|ℳ𝑘|

𝐿
)
3

 

𝑞𝑘 indicates throughput satisfaction, where 𝑔̃𝑘 is the preset throughput requirement for 

UE 𝑘. If the throughput 𝑔𝑘 does not meet this requirement, the reward is 0. 𝑚𝑘 indicates 
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the AP cluster size factor. The computational load for signal processing is proportional to 

the cube of the AP cluster size |ℳ𝑘|. 𝑚𝑘 decreases in proportion to the cube of the AP 

cluster size. 𝐿 is the number of APs in the area. The reward is high when the throughput 

requirements are met with the minimum AP cluster size for UE 𝑘.  

 

3) State 

The state for UE 𝑘 is defined as 𝑆𝑘 = [|ℳ𝑘|
pre, 𝑔̃𝑘 , 𝑈𝑘 , 𝑈𝑘

pre
, 𝑗𝑘]. The previous AP cluster 

size |ℳ𝑘|
pre is needed to determine the change in the AP cluster size from the previous 

time step. The throughput requirement 𝑔̃𝑘 helps ascertain the required radio quality for 

the UE. 𝑈𝑘 = [𝑢𝑘,1, 𝑢𝑘,2, … , 𝑢𝑘,𝑏 , … , 𝑢𝑘,𝐵], where 𝑢𝑘,𝑏 is the RSRP from the b-th highest AP. 

𝑈𝑘
pre

 represents 𝑈𝑘 at the previous time step and helps to learn changes in the channel 

state due to UE mobility. To account for the impact of other UEs around UE 𝑘, we employ 

𝑗𝑘 as the count of overlapping APs in the AP cluster of UE 𝑘 and other UEs. 

 

II-7.4.  Simulation Evaluation 

II-7.4.1.  Simulation Conditions 

The main parameters for the numerical simulation are summarized in Table II-7.4.1-

1. We use a 1 km2 urban structure with 400 APs around Shibuya Station in Tokyo and 

employ channel data based on ray tracing. 100 UEs with different throughput 

requirements and velocities move randomly. The throughput requirements and velocities 

of each UE are randomly set from {50, 100, 150} Mbps and {0, 4, 30, 60} km/h, respectively.  

 

Table II-7.4.1-1: Simulation parameters 

Parameters Values 

RAN environment parameters 

Simulation area (max) 1 km×1 km at Shibuya in Tokyo 

Number of deployed APs, L 400 

Number of UEs, K 100 

Number of antennas in AP, N 1 

Frequency 3.5 GHz 

System bandwidth 100 MHz 

UE transmission power 20 dBm 

Large-scale fading Ray tracing 

Small-scale fading Rayleigh fading 

Noise figure 7 dB 

Number of pilot sequences, 𝜏𝑝 24 

UE movement speed, 𝜓𝑘 {0, 4, 30, 60} km/h 

User traffic Full buffer 

Throughput requirements, 𝑔̃𝑘 {50, 100, 150} Mbps 

Time step length 50 msec 

GA parameters 

Population size 50 

Number of generations 200 
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Mutation rate 0.2 

DRL parameters 

Target network update intervals 2500 

Network parameters copy intervals 500 

Training batch size 512 

Discount factor 0.5 

Learning rate 0.00025/4 

Episode length 1000 time steps (50 seconds) 

Number of training episodes 100 

Number of test episodes 5 

Number of RSRP in state, B 20 

Variation range in action, e 2 

 

II-7.4.2.  Evaluated Methods 

In the simulation evaluation, we compare the following methods: 

⚫ Static approach (SA): The AP cluster size for each UE is predetermined. To satisfy 

throughput requirements with 90% probability, we set AP cluster sizes of 5, 7, and 

13 for UEs with throughput requirements of 50 Mbps, 100 Mbps, and 150 Mbps, 

respectively. 

⚫ Closed-loop control (CLC): If the throughput does not meet the requirements, the 

AP cluster size is increased. Conversely, if the throughput meets the requirements, 

the size is decreased. 

⚫ Genetic algorithm (GA): We define the combination of the actions for each UE as 

an individual. The objective function is defined as the summation of rewards for 

all UEs. The parameters for GA are shown in Table II-7.4.2-1. 

⚫ Distributed DRL (D-DRL): To validate the effectiveness of the AA, we introduce 

D-DRL without the AA. We adopt the architecture of D-DRL via the per-user 

model described in Section II-7.3. .  

⚫ Distributed DRL With Actor Allocator (D-DRL with AA): This is a proposed 

method for applying AA to D-DRL. 

 

II-7.4.3.  Simulation Results 

Fig. II-7.4.3-1 shows the average throughput satisfaction rate, indicating the ratio of 

UEs meeting throughput requirements among all UEs. It is defined as ∑ 𝑞𝑘𝑘∈𝐾 /𝐾. SA, D-

DRL, D-DRL, D-DRL with AA, and GA maintain a throughput satisfaction rate of around 

90%. In SA, a fixed AP cluster size is set to satisfy throughput requirements with a 90% 

probability. In D-DRL and D-DRL with AA, the satisfaction rate is kept at the same level 

as that of SA, and approaches that of GA which obtain near-optimal solutions. CLC based 

solely on throughput feedback makes it difficult to consistently satisfy the throughput 

requirements.  
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Fig. II-7.4.3-2 presents the total computational load of signal processing, inference, 

training and GA. D-DRL and D-DRL with AA suppress the signal processing load 

compared with SA and CLC by selecting the minimal AP cluster size for each UE. In D-

DRL, actors are launched for each UE in parallel. This increases the inference load 

proportionally to the number of UEs. For D-DRL with AA, the inference load is lower than 

that of D-DRL because AA minimizes the number of launched actors and reduces the 

inference frequency. GA needs substantial computational resources for real-time AP 

clustering. The total computational load for D-DRL with AA is reduced by 29% compared 

with that of SA. The proposed method demonstrates AP clustering to facilitate scalability 

in large-scale environments. 

 

Fig. II-7.4.3-1: Throughput satisfaction rate 

 

 

Fig. II-7.4.3-2: Total computational load 
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II-7.5.  Conclusion 

In this paper, we introduced an AP clustering method using D-DRL to address the 

scalability issue. By employing the per-user model and distributed processing, we 

demonstrated that learning performance remains high with a small-sized model. 

Furthermore, by assigning UEs to actors on the basis of their movement speed, the 

inference frequency can be reduced. The overall computational load, including DRL and 

signal processing, was reduced by 29% compared with that of SA with a fixed AP cluster 

size. The proposed method achieves AP clustering that satisfies the throughput 

requirements with minimal computational load, even in large-scale environments. 
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II-8.  Cross-layer Access Control Techniques using AI 

Hiromichi TOMEBA and Osamu Nakamura 

Sharp Corporation 

 

Abstract— The demand for large-capacity, latency sensitive applications such as ultra-

high-definition video transmission is increasing in wireless communication systems. In 

high-demand applications such as ultra-high-definition video transmission, there is a 

problem that increasing the capacity of wireless communication does not necessarily lead 

directly to the realization of such applications. Therefore, to improve the number of 

applications that can be realized, we have studied the cross-layer access control 

techniques, which improves video throughput based on whether the requirements for 

ultra-high-definition video are satisfied, rather than conventionally called throughput, 

which is calculated from correctly received bits. However, the requirements of each 

application are diverse. Since the optimal allocation of radio resources to users based on 

the application requirements poses a highly complex combinatorial challenge, we exploit 

the AI, which efficiently associates the application requirements with the radio resource 

allocation, to solve this problem. In this paper, we show the computer simulation and 

indoor filed trial results of the radio resource allocation techniques using the video 

throughput. 

 

II-8.1.  Introduction 

Transmission of ultra-high-definition images and videos is increasingly being adopted 

across in a variety of applications, including industrial fields such as image inspection, 

healthcare fields. This trend is expected to accelerate in coming years. In the beyond 5G 

era, it is necessary to facilitate the transmission of large-capacity and low-latency traffic 

generated by these applications through wireless communication networks. Since ultra-

high-definition video is expected to be predominantly used indoors, both the cellular 

networks and private local area networks (LANs) will play an important role in 

supporting these high-demand applications. 

On the other hand, user experience is important for application accommodated. For 

high-demand applications such as ultra-high-definition video transmission, increasing 

the capacity of wireless communication does not necessarily lead directly to the effective 

support of these application [1]. Therefore, we have investigated a cross-layer 

collaborative access control technology that improves the video throughput with the 

requirements of video transmission considered [2]-[4]. These technologies demonstrate 

significant improvements in the number of applications accommodated compared to 

conventional throughput-based methods that consider the number of successfully 

transmitted bits, such as proportional fairness [5]. 
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As mentioned earlier, considering application requirements contributes to increasing 

the number of applications that can be accommodated, but the requirements of each 

application are diverse. For example, even in ultra-high-definition video transmission, 

multiple requirements such as remaining buffer capacity and allowable delay time are 

required. Naturally, since there are multiple users, the number of combinations of 

factors to be considered is enormous. Therefore, we have considered resource allocation 

using deep reinforcement learning, considering the use of machine learning. 

This paper explain the concept of application layer throughput and show the 

simulation and experimental results． 

 

II-8.2.  System Model 

Conventionally, the throughput is generally used as a performance metric of wireless 

communication, which is calculated from the number of bits included in successfully 

received transmission packets (hereafter referred to as bit throughput). However, user 

experience is necessary for the accommodation of video applications, and it is required 

to satisfy the requirements of the applications. Therefore, it is important to use video 

throughput which is the throughput calculated from the received video packets 

satisfying the requirements as a performance metric [6]. Fig. II-8.2-1 shows an overview 

of video throughput. The requirements for video throughput are that periodically 

generated video packets must be correctly received within the allowable delay time. If a 

video packet cannot be transmitted within the allowable delay time, some of the correctly 

received transmission packets are counted as bit throughput, but they are not counted 

as video throughput. If the requirement of receiving a video packet within the allowable 

delay time is satisfied, the number of bits included in the video packet is counted as video 

throughput. 

In general, video data is divided into multiple video packets and transmitted. 

Conventional bit throughput is calculated from the number of bits included in 

successfully received transmission packets. Here, the bit throughput of the u-th user is 

𝑅𝑢
𝑏(𝑇), and the video throughput is 𝑅𝑢

𝑣(𝑇). 

 

{
 
 

 
 𝑅𝑢

𝑏 =
1

𝑇
∑𝐵𝑢

𝑏(𝑡)

𝑇−1

𝑡=0

,

𝑅𝑢
𝑣 =

1

𝑇
∑𝐵𝑢

𝑣(𝑡)

𝑇−1

𝑡=0

⬚ ⬚ ⬚⬚ ⬚ ⬚⬚ ⬚ ⬚ (1) 

 



 

 

 

 89 

where 𝑇 is the observation time, 𝐵𝑢
𝑏(𝑡) is the number of bits correctly received by the u-

th user from time 𝑡 − 1 to 𝑡, and 𝐵𝑢
𝑣(𝑡) is the video packet size correctly received by the 

u-th user from time 𝑡 − 1  to 𝑡. 

 

 

 

 

Fig. II-8.2-1. Relation between the application and physical layer throughput. 

 

In order to improve video throughput, it is necessary to appropriately allocate wireless 

resources by considering the infinite number of user conditions, such as remaining 

packet size, allowable delay time, allocatable wireless resource candidates, and their 

quality. Using the video throughput shown above as a metric, we have been studying the 

allocation of frequency bands in which each user exchanges frames and the allocation of 

available radio resources within the selected frequency band. 

Regarding radio resource allocation, two methods are considered: wideband (WB) 

resource allocation, which allocates the entire available wireless resource band to one 

user, and SB resource allocation, which divides the entire band into multiple subbands 

(SB) and allocates each SB to a user. In wideband transmission where frequency-

selective fading cannot be ignored, SB resource allocation is suitable for increasing the 

capacity of the system because it can provide user diversity effects. However, as the 

number of combinations increases relative to WB resource allocation, the complexity of 

scheduling also increases. 

For the SB resource allocation, we have studied the radio resource allocation 

techniques with the deep reinforcement learning (RL) using deep neural network (DNN) 

considering the user situation including the achievable the video throughput. In order to 

consider the video throughput, we set the reward r for RL expressed as  

 

𝑟 = ∑𝑟𝑢

𝑁𝑢

𝑢=1

, 𝑟𝑢 = {
1, 𝑅𝑢

𝑣 𝑅̂𝑣⁄ ≥ 𝛼

0, 𝑅𝑢
𝑣 𝑅̂𝑣⁄ < 𝛼

 , (2) 
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where 𝑁𝑢, 𝑅̂𝑣, and  are denote the video throughput of u-th user, average video rate, 

and threshold for the ratio of the current video throughput to the average video rate, 

respectively. The reward 𝑟 leads the number of applications accommodated increase.  

 

Figure II-8.2-2(a) represents the assumed system model. In this simulation, we assume 

the downlink transmission using infrastructure mode where the single access point (AP) 

with 4 users. Simulation conditions are summarized below. The carrier frequency and 

the bandwidth are assumed as 5 GHz and 80 MHz. The candidates of the SB size are 20, 

40 and 80 MHz. The transmit power is 20 dBm. The antenna gain is 0 and -2 dBi for AP 

and each user. The standard deviation and noise figure are 5dB and 7 dB, respectively. 

The average video rate is 100 Mbps, where the video packet are periodically generated 

with 10 ms periodicity. The video traffic is generated using the wireless display model 

[8]. Other conditions follow the evaluation scenario of IEEE 802.11ax [7]. 

In the RL, the assumed learning algorithm is the deep Q-network (DQN). The number 

of epochs is set to 200, and the learning model is updated every epoch.  Regarding the 

user placement, to acquire generalization performance, the users are randomly placed 

between epochs during the learning process. In each epoch, 500 steps are executed.  The 

DNN for actor consists of an input layer, three hidden layers, and an output layer. Each 

hidden layer has 32 nodes. The reward parameter 𝛼  of (2) is set to 0.25 based on 

simulations.  

Figure II-8.2-2(b) shows the cumulative distribution function (CDF) of video 

throughput of each user. For comparison, the conventional proportional fairness (PF), 

which consider the bit throughput, is also shown in Fig. II-8.2-2(b). It is noted that the 

maximum video throughput is not meet the average video rate since the video packet 

size is randomly generated. It is shown that the video throughput of the SB allocation is 

better than that of the WB allocation irrespective of the RL and PF. It is also seen from 

Fig. II-8.2-2(b), the RL can provide a better video throughput performance than the PF. 

From the simulation results, in terms of the number of applications accommodated 

(calculated as the number of users with an average video rate of 90% or more), RL using 

SB allocation can provide approximately 2.4 times better performance compared to PF 

using SB allocation. 
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(a) Simulation model 

 
(b) Video throughput of each user 

Fig. II-8.2-2. Simulation results. 

 

II-8.3.  Experimental Result 

Indoor propagation environment tests are being conducted using a prototype that 

incorporates wireless LAN equipment to implement cross-layer access control technology 

based on deep reinforcement learning. Computational simulations have demonstrated 

that this approach yields significant performance improvements [6]. The outline of the 

demonstration system is shown in Figure II-8.3-1(a). To simulate an AP capable of 

controlling multiple frequency bands, including the millimeter-wave band at 60 GHz, we 

connected multiple APs configured for each frequency band to a control PC (router PC), 

which was played as the prototype AP. The outline of the testing environment is 

illustrated in Figure II-8.3-1(b). Assuming a medium-sized conference room, the 

prototype AP was placed in a corner of the environment, and users equipped with video 

receivers were positioned at points labeled 1-th to 10-th in Figure II-8.3-1(b). Each user 

supports 2.4/5/6 GHz, with users at points 1-th and 2-th specifically supporting 60 GHz 

as well. 

In each frequency band, excluding the 60 GHz band, the available bandwidth is set to 

20 MHz, while the 60 GHz band is set to 2.16 GHz. The average video rate is assumed 
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as 60 Mbps. Additionally, to simulate interference from other systems, a pair of access 

points (APs) and users as interference sources are separately deployed, generating an 

average interference traffic of 100 Mbps in the 6 GHz band. 

The decoded results of the video packets transmitted to each user are fed back to the 

prototype AP as video throughput. The deep reinforcement learning PC determines the 

frequency band allocated to each user based on the feedback, allowing for the evaluation 

of performance characteristics. For comparison, a scenario is also tested where the 

frequency bands are selected randomly without employing reinforcement learning based 

on video throughput. 

Figure II-8.3-1(c) presents the cumulative distribution function (CDF) of the number 

of users that can be accommodated, where the number of accommodated users is defined 

as those satisfying the average video rate of 60 Mbps. As illustrated in Figure II-8.3-1(b), 

when utilizing deep reinforcement learning, an improvement of approximately 2.5 times 

at the CDF 50% value and approximately 2 times at the CDF 90% value is observed 

compared to the random selection scenario. It can be confirmed that deep reinforcement 

learning effectively adapts to the propagation environment and the achievable video 

throughput. 

 



 

 

 

 93 

  
(a) Experimental system model 

 
(b) Test environment 

 
(c) Experimental result 

Fig. II-8.3-1. Simulation results. 

 

II-8.4.  Conclusion 

This paper shows the concept of application layer throughput exploiting the AI, which 

efficiently associates the application requirements with the radio resource allocation, for 

improving the number of accommodated users. We show the simulation and 

experimental results and the application layer throughput can improve the number of 

accommodated users. 
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II-9.  AI-based Application-aware RAN Optimization 

Eiji Takahashi, NEC Corporation 
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Abstract— It has become increasingly important for industries to promote digital 

transformation by utilizing 5G/6G, Internet of Things (IoT), and Artificial Intelligence 

(AI) to realize a highly productive and prosperous society. In addition to conventional 

policies of improving the average Quality of Service (QoS) at each mobile coverage area, 

there is an increasing need to strengthen policies that precisely adhere to QoS 

requirements per User Equipment (UE) and in real-time to enable the stable use of 

applications at high-performance levels, e.g., work speed or productivity. The Open 

Radio Access Network (Open RAN), specifically standardized by the O-RAN Alliance (O-

RAN), offers significant potential to enable flexible resource management to address 

diverse QoS requirements. This paper introduces an application-aware RAN 

optimization method that can support such policies based on O-RAN architecture. 

 

II-9.1.  Introduction 

Because of the labor shortage and the decrease in skilled workers due to the declining 

birthrate and aging population, there is an increasing need to replace humans with 

machines in several tasks to solve social issues. Accordingly, there is a need for 

automation, remote monitoring/control, and labor-saving by promoting digital 

transformation through the utilization of 5G/6G, IoT, and AI to realize a highly 

productive and prosperous society [1][2][3][4]. In digital transformation, many use cases 

require mobility and ease of equipment installation, making reliable wireless 

communication essential. To enable the stable use of applications at high-performance 

levels, e.g., work speed or productivity, often results in stricter QoS requirements. Thus, 

in addition to policies aimed at improving the average QoS at each mobile coverage area, 

there is an increasing need to strengthen policies that precisely adhere to QoS 

requirements for each UE in real-time.  

Application developers often design applications based on current wireless 

communication standards, whereas innovative developers focus on application goals first 

and then address communication issues through trial and error. Customized 

communication infrastructures are often required for specific applications, which are not 

scalable for widespread 5G/6G adoption. To this end, the RAN must be autonomously 

and adaptively controlled based on the application, network, and site conditions. 

Emerging trends like Open RAN, specifically standardized by the O-RAN [5][6], offer 
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significant potential to enable flexible resource management to address diverse QoS 

requirements.  

This paper introduces an application-aware RAN optimization method based on the 

O-RAN architecture to support such policies [7][8]. 

 

II-9.2.  AI Native Open RAN 

Open RAN is the concept of disaggregating functions within the RAN, enabling the 

various hardware and software functions that make up the RAN to be provided in a 

multi-vendor, interoperable environment. Open RAN is an ongoing shift in mobile 

network architectures for operators to introduce non-proprietary subcomponents from 

various vendors that adhere to a set of industry-wide standards that telecom suppliers 

can follow when producing related equipment. The O-RAN is a worldwide community of 

operators and vendors with a mission to reshape RAN to be more open, virtualized, and 

fully interoperable. One of the key advantages of Open RAN is the introduction of greater 

automation and intelligence into networks. The use of AI-driven capabilities and 

virtualized computing and distribution functions will lead to a significant reduction in 

hardware-dependent systems. The introduction of other functions, such as "rApps" 

running on non-real-time and "xApps" running on near-real-time RAN Intelligence 

Controllers (RIC) platforms, will help operators intelligently monitor and manage their 

networks. 

Many operators and vendors have provided their visions for 6G. Most of these visions 

emphasize two critical points: automation and the need for 6G to be “AI native”. Given 

the higher speeds and lower latencies involved, most anticipate even more automation 

and intelligence in 6G. The plans for solutions that 6G will support are already being 

developed today in Open RAN, which is expected to serve as a critical architectural 

foundation for 6G, much like virtualization is a foundational element for 5G RAN today. 

Delivering new 5G/6G solutions to new markets requires collaboration with industry 

vertical vendors and other specialist vendors, which in turn requires the open 

architecture and collaborative models that Open RAN provides. A good example is that 

mobile operators struggled in the past to provide bespoke solutions that could meet the 

specific needs of individual enterprises. With 5G/6G and Open RAN capabilities, it is 

now possible to deliver services that are tailored to the individual enterprise’s needs and 

create new business opportunities for operators. 

 

II-9.3.  Application-aware RAN Optimization 

The industrial use case is considered to ensure the uninterrupted transport of 

materials at the factory/warehouse floor utilizing Autonomous Mobile Robots (AMRs). 

Regarding latency, availability, and determinism, communication services for remote-
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control applications must fulfill stringent requirements. In these applications, cyclic two-

way communication is essential for monitoring robot status and sending control 

instructions. If the latency exceeds a certain threshold, the system will safely stop to 

ensure safety. While fail-safes are essential for maintaining safety, frequent occurrences 

of these fail-safes can lead to decreased facility utilization and productivity. 

The application-aware RAN optimization method utilizes AI to analyze the 

communication requirements and radio quality fluctuations for individual UEs, 

including robots and vehicles. Based on this analysis, the AI dynamically adjusts RAN 

parameters for each UE to optimize performance. This AI learns from past operational 

records of robots and vehicles to optimally control the RAN parameters. It adjusts RAN 

parameters such as the target block error rate, the allocation ratio of physical resource 

blocks, and the allowable additional delay while predicting the likelihood of exceeding 

communication latency requirements. In typical 5G networks, RAN parameters are fixed 

and configured for the entire network. However, the proposed method dynamically 

adjusts them per-UE basis to improve application productivity. The architecture is 

shown in Fig. II-9.3-1. The proposed method can perform the following tasks for each UE 

basis in near-real-time: 1) estimating application QoS requirements based on 

information supplied by the external application server, 2) predicting fluctuations in 

wireless quality using radio quality data from the central unit (CU) and distributed unit 

(DU), and 3) proactively optimizing CU and DU parameters. While running machine 

learning, the system ensures that accuracy is uncompromised. If a risk is detected, it 

switches to a stable logic-based engine. This technology guarantees stability in RAN 

control by switching engines. 

 

 

Fig. II-9.3-1 Architecture 

 

II-9.4.  Evaluation 

The simulation was conducted in which a server remotely controlled mobile robots over 

a 5G network indoors. We developed and utilized a precise simulator consisting of 
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mobility, radio propagation, and network simulators. The timeliness and availability of 

communication services were evaluated in the context of mean time between failures in 

mobile robot operations, one of the critical key performance indicators defined by 3GPP 

for this type of traffic. The proposed method optimizes RAN parameters, including the 

target block error rate, the allocation ratio of physical resource blocks, and the allowable 

additional delay each component can endure on a per-UE basis in near real-time. The 

proposed method was compared with the conventional method in which these 

parameters are fixed to default values. The simulation conditions are shown in Table II-

9.4-1. 

 

Table II-9.4-1 Simulation Conditions 

The number of gNodeBs, cells 1, 1 

Frequency, band 4.8 [GHz], n79 

Bandwidth 100 [MHz] 

Subcarrier spacing (SCS) 30 [kHz] 

Duplex TDD 

Downlink to Uplink ratio 1:1 

Transmission power 23 [dBm] 

Floor area 100 [m] x 100 [m] 

Floor layout layout assuming a factory 

The number of simultaneously running robots up to 18 

Robot running speed up to 3 m/s 

Traffic per robot downlink: up to 150Kbps 

uplink: up to 1 Mbps 

 

Fig. II-9.4-1 shows the simulation results regarding the relative frequency of unmet 

QoS requirements per packet in an environment where both QoS requirements and radio 

quality fluctuate based on field conditions, such as driving speed and surrounding 

circumstances. Our method significantly reduced the number of packets failing to meet 

QoS requirements, achieving less than 1/50 compared with the conventional method. In 

other words, the number of system outages due to communication issues in mobile robot 

operations was significantly decreased, effectively improving the mean time between 

failures by a factor of 50. 
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Fig. II-9.4-1 Simulation Results 

 

II-9.5.  Future Vision 

Conventionally, IoT devices are equipped with intelligent functions specific to their 

vendor or model, and the IoT controller software is also tied to a particular vendor and 

model. When AI (for RAN) and 5G/6G realize an adaptive and reliable wireless 

communication environment with low latency, intelligent and high-load data processing 

will be possible on the cloud or edge server. This makes it easier for the IoT controller 

installed in the cloud or edge server to control IoT devices of multiple vendors 

coordinately and for various models to optimize the entire system. Furthermore, 

achieving simplification, lightweight implementation, and generalization of IoT devices 

will likely drive the spread of IoT solutions and, as a result, accelerate the developments 

in IoT applications and AI (for IoT). 

 

II-9.6.  Conclusion 

Mobile network specifications will become more sophisticated in the 5G/6G era. 

However, intelligent network optimization during operation will be essential for 

adapting to the evolving conditions of applications, networks, and sites. An application-

aware RAN optimization method based on Open RAN architecture was introduced to 

ensure strict QoS requirements across various vertical domains while accommodating 

diverse application needs and fluctuations in wireless quality. The simulation results of 

applying the proposed method to a system that remotely controls multiple autonomous 

robots operating in factories/warehouses confirmed that the number of robot stoppages 

could be reduced by 98% or more compared to the scenario where the method was not 

utilized. 

Advancements in AI (for RAN) and 5G/6G technologies aim to deliver adaptive and 

reliable wireless communication that meets the QoS requirements of various 
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applications. These improvements will facilitate sophisticated and high-load data 

processing on cloud or edge servers. Additionally, they will enhance the management 

and optimization of IoT devices from diverse vendors, simplifying these devices to 

accelerate the development of AI (for IoT) and IoT applications. This, in turn, will 

promote the broader adoption of IoT solutions. 
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Abstract— This paper provides an overview of Autonomous Networks expected to be  

realized in Beyond 5G. Furthermore, this paper describes the details of network  

operation by AI, which is a necessary element of the Autonomous Network, and  

especially summarizes the strategy for managing network failures, and provides the  

overall framework required for future network operation. 

 

II-10.1.  Introduction 

The fundamental role of the mobile network is to provide connectivity for user 

equipment (UE). Furthermore, to achieve high-quality mobile service, the network must 

meet the quality requirements of UE and the web services with which UE communicates. 

In traditional network operations, human operators have played this role. Operators 

install the network equipment, such as base stations and servers, that constitutes the 

mobile network, configure them appropriately, and replace them in the event of failures. 

These critical tasks enable the mobile network to meet these quality requirements 

around the clock.  

In recent years, there has been a lot of standardization, research, and development 

activities on Autonomous Networks [1,2], where the network autonomously performs 

these tasks traditionally performed by human operators. As shown in Fig. II-10.1-1, in 

the Autonomous Network, the network's configuration and control are managed 

autonomously based on Intent information, which represents the requirements of actual 

users of the network.  

Intent is more abstract information than policy, rules, and logic regarding the network 

and represents an intention and expectation of the network's user. In the example in 

Fig., the operational system, which consists of the Business Support System (BSS) and 

the Operation Support System (OSS), receives an Intent from a user who wants to launch 

a 4K streaming service in Tokyo, divides the Intent into each network domain, translates 

it into an actual network control policy, and requests it to each network domain. In some 

cases, Intent may also be sent directly to a domain controller that controls each network 

domain without being translated into a policy in the operational system. Since the 

domain controller has a more detailed understanding of the operational data of each 

network domain, a more detailed and accurate policy translation can be expected. Each 
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domain controller implements control of the relevant network to ensure the quality 

specified in the policy. 

 

II-10.2.  AIOps and Autonomous Network 

Artificial Intelligence for IT Operations (AIOps) is essential for achieving Autonomous 

Networks. As described in the above section, in Autonomous Networks, it is necessary to 

translate abstract Intent received from users, e.g., “I want to launch a 4K streaming 

service in Tokyo”, into concrete policies and rules, e.g., “Creating MPLS-TE paths with 

30~Mbps transfer capability”. Intent allows different users to request network services 

without using a technical language that they do not usually use, such as a programming 

language. However, user Intent varies widely, making traditional fixed rule-based 

translation difficult. Furthermore, it is essential to build the network policy translated 

from the Intent on the network infrastructure (RAN, Transport Network, and Core) and 

to deal with network failures without human operators. To address such issues, AIOps 

for Autonomous Networks requires three key elements: 1. Intent translation, 2. Network 

resource management, and 3. Network failure management. 

In 1. Intent translation, users' abstract Intent is translated into a specific network 

policy. Generative AI and the Large Language Model (LLM), which have been actively 

researched and developed for practical use in recent years, can be applied to this process. 

Furthermore, the interaction between a user and AI is beneficial not only for 

understanding the user's needs but also for negotiating with the user, for example, 

negotiating alternative proposal by AI when network resources are insufficient. 

In 2. Network resource management, based on the converted network policy, network 

resources are reserved, and the user-requested network service is created and provided 

to the user. An optimal resource allocation placement is determined to satisfy the 

network policy, and network elements (e.g., virtual mobile core, MPLS-TE path, virtual 

CU/DU) that constitute the user's network service are generated on demand. In addition, 

network resources are not always prepared enough to always satisfy all user requests 

and accommodating them may not be possible. In such cases, admission control of user 

requests is necessary, and based on the request status (new requests, cancellations), 

decisions must be made to maximize the profit of the network operator, and automated 

decision-making, such as Deep Reinforcement Learning, can be applied [3]. 

Finally, in 3. Network failure management, when a network failure (e.g., HDD failure, 

link down, restart) occurs in the created user network service, a series of processes that 

detect the failure event, identify the root cause, and resolve the issue are implemented. 

Various AI technologies, such as anomaly detection and classification, are being 

considered and introduced. The next section of this paper describes the detailed technical 

aspects obtained through our research results. 
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Furthermore, with the remarkable development of LLM technology in recent years, it 

is expected that R&D and standardization of Agentic AI, in which AI Agents with LLM 

functions autonomously provide instructions and reports on each task while interacting 

with human operators, will accelerate over the coming years. 

 

II-10.3.  Network Failure Management by AIOps 

Our proposed integrated framework [4] for network failure management with AIOps 

is shown in Fig. II-10.3-1, including data collection, anomaly detection, and fault 

recovery functions. The framework has three phases: the data collection for AI model 

training, the AI model training phase for AIOps, and the AI model inference phase from 

actual operational data. Firstly, in the data collection phase, the network devices, such 

as servers and routers, that consist of the operation target network send statistical data. 

Typical statistical data include CPU, memory, network, and other resource utilization 

rates. Furthermore, user utilization data (e.g., # of sessions) related to mobile network 

software such as PGW and UPF is also included. In addition, we have proposed a method 

for anomaly detection and prediction based on Observability with Linux eBPF, which is 

frequently used in cloud-native environments [5,6]. Since data is essential for training 

highly accurate AI models, more detailed data describing system behavior, such as eBPF, 

will be required in future mobile networks. 

Secondly, in the AI model training phase, AI models are trained from operational data, 

such as CPU utilization rate and trouble tickets, obtained in the target network. Since 

network failures are infrequent events in production networks, sufficient operational 

data for AI models may not be obtained. Therefore, a test network simulating the 

production network can be created to train precise AI models, and operational data 

obtained from pseudo network failure generated in the test network can be utilized as 

input data for the AI model. 

Finally, in the AI model inference phase, the trained AI model detects a root cause of 

network failure from the latest operational dataset and suggests an optimal recovery 

workflow from the network failure, with anomaly detection and fault recovery function. 

The anomaly detection function detects network failures and determines their root 

causes. Within this framework, we have evaluated a comparative experiment that 

involved measuring the performance of the fault analysis function using three AI 

algorithms, multi-layer perceptron (MLP), random forest (RF), and support vector 

machine (SVM), on the testbed network built by the virtualized network functions 

(VNFs) [7]. RF showed the highest accuracy, and F1 scores for three network failures: 

compute node down, network interface down, and CPU overload were 1.00, 0.96, and 

0.95, respectively. This difference in accuracy by AI algorithms is likely due to the 

dataset generated from the performance management (PM) data, and the increase in 
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training data, feature reduction, or balance adjustment of normal/abnormal samples 

affected the accuracy.  

Furthermore, we have proposed a scheme for fault recovery using reinforcement 

learning (RL) [8]. The scheme can adapt to network topology and configuration changes 

and has a data representation procedure to prepare a data set for RL, which is formed 

as a matrix of network topology and fault state. The simulation results showed that 

preparing enough training data requires a tremendous amount of failure injection and 

recovery operation trials. The test network simulating the production network can 

potentially shorten the time for trials in the training process. However, our simulation 

also revealed that the behavior between the test network and the production network 

infrastructures should be 87% coincident for application to the proposed scheme. 

 

II-10.4.  Conclusion 

This paper described an overview of Autonomous Networks and AIOps. To benefit from 

the convenience brought by Autonomous Networks, it is necessary to introduce the 

concept of such Autonomous Networks and AIOps as the network architecture for 

Beyond5G system. More specifically, it is essential to have architectural support to 

create an end-to-end network instance and control user policies on the network instance 

based on user Intent. Furthermore, the Beyond5G system also needs to centrally manage 

operational data from the RAN, Core, and Transport Network in an integrated way and 

automatically train and deploy the optimal AI model for AIOps. 

 

 

Fig. II-10.1-1 General concept of Autonomous Network 
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Fig. II-10.3-1 AIOps framework for Network Failure Management 
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II-11.  Logic-oriented Generative AI Technology for Autonomous Networks 

Takayuki Kuroda (NEC) 

 

Abstract— Autonomous network operation technology based on intent has been 

attracting attention toward advanced automation of network operation. However, the 

realization of intent translation, which is the key to this technology, faces the challenge 

of achieving both flexibility and faithfulness. In this paper, we propose a logic-oriented 

generative AI for intent translation, which is a logical search engine enhanced by AI/ML 

technology. This paper presents the position of our proposal with respect to related 

techniques, and then briefly outlines its method. 

 

II-11.1.  Introduction 

Modern networks continue to grow in complexity. Their rapid and stable provision is 

becoming increasingly difficult, and a high degree of operational automation is required 

[1][2]. Intent-based networking is one of the promising foundational approaches to 

automate network operations [3]. Intent is information that expresses requirements in 

an abstract and declarative manner. According to intent-based automation techniques, 

a machine interprets the intent and performs the construction and operation of the 

network. This allows users to easily build the desired network by simply entering high-

level requirements without having to enter detailed information. 

To realize such a technology, the ability to translate intent into concrete network 

configurations is essential. This translation corresponds to the design of the network and 

requires complex logical thinking. Conventional techniques for intent translation are 

known to be based on deductive engines [5]. Another possible approach is to use an 

inductive inference function, such as LLM. However, the former has a problem with the 

flexibility of possible answers. The latter has been pointed out to have a problem of 

faithfulness [6]. Therefore, we propose a mechanism that combines a deductive engine 

and an inductive AI so that the engine can search for effective solutions from a large 

solution space at high speed, thereby achieving both flexibility and faithfulness. In this 

paper, we describe the challenges of existing methods and outline the proposed technique. 

 

II-11.2.  Automation of Intent Translation and Its Challenges 

Intent-based networking is a new technology that provides an abstraction layer for 

network control [4]. It allows users to control the network by directing the desired state 

of network services instead of telling them how to configure network services. There are 

various issues to realize this technology, including the means to appropriately express 

the various network-related intent, the means to disambiguate them, and the means to 

concretize the abstract intent so that they can be deployed in practice. Among these 
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issues, the means to derive concrete network configuration from abstract Intent, i.e., 

translation, is a key issue in realizing Intent-based networking. Figure II-11.2-1 shows 

an overview of intent translation. The intent in this research consists of functional and 

non-functional requirements for the network and/or network function to be constructed. 

The intent translator is based on such intent information and complements it by 

concretizing the details necessary for the function to work. 

 

 

Fig. II-11.2-1 Concept of automated network intent translation. 

 

Two typical approaches to realize intent translation can be considered: deductive and 

inductive. In the deductive approach, the technique described in [5], the intent is refined 

step by step by applying predefined patterns, and a reasonable proposal of network 

configuration that satisfies the intent is searched among the possible proposals that can 

be generated. Flexibility is generally an issue with such a technique. That is, the solution 

is limited to specific patterns defined in advance. Although a variety of solutions can be 

generated by combining the patterns, it is necessary to manually align the rules to select 

a reasonable proposal from among them. In contrast, inductive approaches, such as the 

Large Language Model (LLM) can be utilized. Using LLM, it is expected that some 

answers can be obtained for any intent. However, LLMs are known to often give wrong 

answers and are not particularly good at thinking that involves logic, such as network 

design [6]. Thus, a deductive approach has faithfulness but lacks flexibility, while an 

inductive approach has extremely high flexibility but has problems with faithfulness. 

In response to this situation, in the area of LLM, a method to increase logical accuracy 

by dividing thinking into detailed steps has been proposed in recent years, and a number 

of services are already available. This is a method that adds a deductive element to 

inductive methods and improves logical accuracy while maintaining flexibility. On the 

other hand, this paper proposes a method to improve flexibility while maintaining logical 

validity by adding inductive elements to the deductive method described above. 
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II-11.3.  Intent Translation with Logic-oriented Generative AI 

The left side of Figure II-11.3-1 shows our proposed concept of intent translation with 

logic-oriented generative AI. The method is based on a deductive engine, whose search 

is guided by a GNN-based AI, which we refer to as the design AI. The deductive engine 

repeatedly refines the intent in stepwise manner. At each step, the design AI evaluates 

the multiple proposals generated and selects the most promising proposal as the next 

proposal to be refined. The learning of the design AI can be performed by a reinforcement 

learning algorithm. An overview is shown on the right side of Figure II-11.3-1. It learns 

the promise of a configuration proposal by generating expected returns based on the 

values obtained by evaluating the results of the design trials. As the learning proceeds, 

we can observe an increase in the success probability of the trials. The learning process 

is terminated when the improvement in the learning success probability comes to a head. 

 

 

Fig. II-11.3-1 concept of automated intent translation and its learning. 

 

Design AI allows the actual search space to be narrowed down to allow flexible 

discovery of promising solutions from a vast potential space. In other words, the rules 

for searching for solutions, which were previously defined manually, are replaced by 

learning models. 
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Fig. II-11.3-2 Example of one step refinement of network intent and evaluation 

model. 

 

The validity of the design results of this technique is guaranteed by the constraints. 

Figure II-11.3-2 shows how, together with a network topology, the processing flow to 

perform the functions of the network is embodied in one step. For example, a Turn 

Around Time (TAT) non-functional requirement is evaluated by summing the time for 

each process based on the processing flow and verifying that it falls within the time 

specified as intent. 

However, such a verification can only be performed once the design has been fully 

concretized. This fact has been a factor prolonging the search time, but the use of design 

AI can solve this problem. In the search process, it is important to make the right choice 

in the early stages as much as possible. This is because if a wrong decision is made in 

the initial stage, many trial and errors will have to be made again. In other words, the 

initial decision has a larger search space for later stages. However, as Figure II-11.3-2 

shows, TAT cannot be accurately determined until the last step. The incomplete 

processing flow shown in the upper right corner of Figure II-11.3-2 does not include some 

of the processes, and TAT cannot be calculated correctly. In other words, it is difficult to 

efficiently search a huge search space using logic alone. Instead, the design AI estimates 

the final TAT value from an early stage of the design process. This allows the search to 

be properly guided. On the other hand, constraints are essential to validate the obtained 

design results and to calculate accurate rewards during training. 

 

II-11.4.  Conclusion 

In this paper, we introduced a technology to realize intent translation, which is a key 

element of intent-based networks. In particular, we described a logic-oriented generative 

AI that uses AI/ML technology to enhance the logical search engine in the design of 

network configurations to achieve both flexibility and faithfulness. In the future, we will 
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continue to refine the technology and make it practical, as well as develop methods for 

accelerating learning and automating model development. 
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II-12.  In-Network Learning for Distributed RAN AI, ~Distributed LLMs via Latent 

Structure Distillation~ 

Takashi KOSHIMIZU 

Huawei Technologies Japan 

Chenghui PENG, Shaoyun WU 

Huawei Technologies 

 

Abstract— This paper proposes a distributed learning algorithm, named In-Network 

Learning (INL) for inference over wireless radio access networks (RANs) without 

transmitting raw data. The applied algorithm is suitable for both multimodal and 

heterogeneous data where the fusion of features extracted in a distributed manner. It also 

offers substantial gains over state-of-the-art (SOTA) solutions such as Horizontal and 

Vertical Federated Learning (FL) and Horizontal and Vertical Split Learning (SL) in terms 

of both accuracy and bandwidth requirements. This eventually discuss how the algorithm 

can be extended to support the deployment of LLMs and knowledge distillation in wireless 

networks. 

 

II-12.1.  Distributed inference over Wireless RANs 

RANs have important intrinsic features that may pave the way for cross fertilization 

between machine learning (ML) and communication. This is in contrast to simply 

replacing one or more communication modules by applying ML algorithms as black boxes. 

While relevant data is generally available at one point in areas such as computer vision 

and neuroscience, it is typically highly distributed across several sites in wireless 

networks. Such examples also include channel state information (CSI) and/or the so-

called radio-signal strength indicator (RSSI) of a user's signal, which can be used for 

things like localization, precoding, or beam alignment [1]. 

 

Conventional common approach for implementing ML solutions involves collecting all 

relevant data at one site (e.g., a cloud server or macro BS) and then training a suitable 

ML model using all available data with ample processing power. However, this approach 

may not be suitable in many cases due to large data volume size and scarcity of resources, 

including power and bandwidth consumption. Additionally, some applications (e.g., 

automatic vehicle driving) asked stringent latency requirements that are incompatible 

with data sharing. In addition, it might be desirable not to share the raw data in order 

for user privacy. Furthermore, edge devices such as small BSs, on-board sensors, and 

UEs typically have limited memory and computational power. Also, the wireless 

environments are typically prone to change rapidly, e.g., fluctuate connectivity and 

occasional joining/leaving devices. Data dynamics is another criticality, where the data 
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become more multimodal and heterogeneous across devices and users. Table-II-12.1-1 

summarizes the main features of inference over wireless RANs. 

 

II-12.1.1.  AI at the Wireless Edge 

The challenges above mentioned have faced a new paradigm called "edge learning" 

and/or distributed learning, where intelligence moves from the center to its network 

edges. In such scenario, the system design plays a central role because both data and 

computational resources are highly distributed. The goal of distributed inference over 

RAN is to make decisions on one or more tasks, at one or more sites, by exploiting the 

available distributed data. In this 

framework, multiple devices (e.g., 

BSs and UEs) are each equip with a 

neural network (NN). Some of the 

devices possess data they have 

acquired through communication or 

sensing, whereas some only 

contribute to the collective 

intelligence through computational 

power, as in Fig. II-12.1.1-1. 

 

II-12.1.2.  Brief Review of SOTA Algorithms 

AI solutions for RANs can be classified according to whether only the training phase 

is distributed (such as Horizontal Federated Learning and Horizontal Split Learning) or 

both the training and inference (or test) phases are distributed (such as Vertical 

Federated Learning). 

 

● Horizontal Federated Learning (HFL): HFL would be the most popular distributed 

learning scheme [2]. It is considered most suitable for settings in which the training 

phase is performed in a distributed manner while the inference phase is performed 

centrally. During the training, each client equips a distinct copy of a same NN model 

where the client trains on its local dataset. The learned weight parameters are then 

Table II-12.1-1. Summary of the main features of inference over wireless RAN 

Fig. II-12.1.1-1 Distributed inference over RAN 
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sent to and aggregated by (e.g., their average is computed) a cloud server or 

parameter server (PS). This process is repeated, each time using the obtained 

aggregated model for reinitialization, until a convergence found. The advantage of 

this approach ensures the model is progressively adjusted to account for all 

variations of the data, not only those of the local dataset. 

● Vertical Federated Learning (VFL) [3]: VFL is a variation of FL, the data is 

partitioned vertically and both the training and inference phases are distributed. 

Fig. II-12.1.2-1 illustrates the data structure in HFL and VFL respectively. In this 

case, client device holds whole 

data that is relevant for a 

possibly distinct feature. A 

prominent application example 

can be seen where the data is 

heterogeneous across clients 

and/or multimodal. In VFL, 

different clients may apply 

distinct NN models that are 

tailored for their own data 

modalities. These models are 

trained jointly to extract 

features that are collectively 

enough to make a reliable decision at the fusion center, as in Fig. II-12.1.2-2a. For 

recent advances on VFL and its applications in wireless settings can be also find in 

[4, 5] with the references. 

Fig. II-12.1.2-1 HFL (left) and VFL (right) 

structure 
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● Split Learning (SL) [6]: Similar to FL, it has two variations: Horizontal SL (HSL) 

and Vertical SL (VSL). VSL was introduced earlier than VFL, now it can be viewed 

as a special case of a VFL. For HSL, a two-part NN model is split into an encoder 

part and a decoder part. Each 

edge device possesses a copy of 

the encoder part and both NN 

parts can be learned 

sequentially. The decoder does 

not have its own data, whereas 

in every training round, the NN 

encoder part is fed with the 

data of one device and its 

parameters are initialized 

using those learned from the 

previous round. Then, during 

the inference phase, the 

learned two-part model is 

applied to centralized data. 

 

II-12.2.  In-Network Learning 

The roots of In-Network Learning (INL) can be seen in [7, 8], with further development 

have been also taking place in [9–11]. INL is the most expected ML scheme for 

distributed inference in heterogeneous and multimodal data. This scheme assuming 

every device equips an NN. During the inference process, each device independently 

extracts suitable features from its input data for a given inference task. These features 

are then transmitted over the network and converged at a given fusion center in order 

to obtain a reliable decision. These devices that hold useful data (these devices play the 

role of encoders) perform individual feature extraction independently from each other. 

Through the training, algorithm ensures that the encoders only extract complementary 

features, for instance, redundant inter-device features are removed, which enabling 

substantial bandwidth savings. The key technical characteristics in this algorithm are 

listed as follows: 

 

⚫ Network Feature Fusion: INL fuses features that are extracted in a distributed 

manner at a fusion center so, collectively they enable a desired decision to be made 

at the fusion center after being transmitted over the network. 

⚫ Feature Redundancy Removal: A distinguishing factor of INL is that, during 

inference, the encoders only extract non-redundant features and they are trained 

Fig.II-12.1.2-2 Feature redundancy removal by INL 
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during training phase. Specifically, during inference process, each encoder only 

extracts features that are useful for a given inference task from its input-data while 

also considering the other features extracted by other encoders. 

⚫ Feature Extraction Depends on Network Channel Quality: Encoder feature 

extraction also considers the quality of the channel to the fusion center. Hence, the 

features are extracted only to the extent that is possible to transmit them reliably 

to the decision maker. 

⚫ Satellite Decoders: The fusion center is equipped with a main decoder and satellite 

decoders, which are trained to make soft decisions based on the individual features 

transmitted by the encoders, the system is depicted in Fig. II-12.1.2-2b. 

 

II-12.3.  Preference Gains 

This section compares the algorithm performance on INL versus HFL and HSL in 

terms of achieved accuracy and the bandwidth requirements. 

 

Experiment 1: We prepare five-sets of noisy versions of images obtained from the 

CIFAR-10 dataset [12]. The images are first normalized, and then corrupted by additive 

Gaussian noise with standard deviation (σ) is set respectively to 0.4, 1, 2, 3, 4. For INL, 

each of the five input NNs are trained on a different noisy version of the same image. 

Each NN uses a variation of the VGG network of [13], with the categorical cross-entropy 

as the loss function. The 

architecture is shown in Fig. 

II-12.3-1. In the experiments, 

all five noisy versions of every 

CIFAR-10 images are 

processed simultaneously, 

each by a different NN at a 

distinct node. 

 

Subsequently, the outputs 

are concatenated and then passed through a series of fully connected (FC) layers at node 

(J + 1). For HFL, each of the five client nodes is equipped with the entire network of Fig. 

II-12.3-1. The dataset is split into five sets of equal sizes, with the split being performed 

such that all five noisy versions of a given CIFAR-10 image are presented to the same 

client NN (note: however, that distinct clients observe different images). 

 

Fig. II-12.3-1, NW architecture. Convolutional layer & Fully 

connected layer 
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For HSL, each input node is equipped with an NN formed by all five branches with 

convolution networks (i.e., the entire network shown in Fig. II-12-3-1, except the part at 

Node (J + 1)). Furthermore, node (J + 1) is equipped with fully connected layers at Node 

(J + 1). Here, the processing during training is such that each input NN vertically 

concatenates the outputs of all convolution layers and then passes that to node (J + 1), 

which then propagates back the error vector. After one epoch at one NN, the learned 

weights are passed to the next client, 

which performs the same operations on 

its part of the dataset. 

Fig. II-12.3-2 shows the amount of 

data needed to be exchanged among the 

nodes (i.e., bandwidth resources) in 

order to get a prescribed value of 

classification accuracy. It can be 

observed that our INL requires 

significantly less data transmission 

than HFL and HSL for the same 

desired accuracy level. 

 

Experiment 2: In the previous experiment, the entire training dataset was partitioned 

differently for INL and HFL in order to 

account for their unique characteristics. 

In the second experiment, they are all 

trained on the same data. Specifically, 

each client NN sees all CIFAR-10 images during training, and its local dataset differs 

from those seen by other NNs only by the amount of added Gaussian noise (withσis set 

respectively to 0.4, 1, 2, 3, 4). Also, to ensure a fair comparison of the three schemes, INL, 

HFL, and HSL, we set the nodes to utilize the same NNs fairly for each of them in Fig. 

II-12.3-3.  

Fig. II-12.3-2 Accuracy vs. bandwidth cost for Experiment-1 

Fig.II-12.3-3 Used NN architecture for 

Experiment-2 

Fig.II-12.3-4 Accuracy vs. bandwidth cost for 

Experiment-2 
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Fig. II-12.3-4 shows the performance of the three schemes during the inference phase 

in this experiment. For HFL, the inference is performed on the image whose quality is 

the average among the five noisy input images used for INL. Again, it can be observed 

that the benefits in INL over HFL and HSL in terms of both achieved accuracy and 

bandwidth requirements. 

 

II-12.4.  LLM 

In addition to having remarkable capabilities, LLMs are significantly contribute over-

all AI development and even re-shaping our future. However, their multimodality, in 

part, causes some critical challenges in the cloud-based deployment: (i) response time, 

(ii) communication bandwidth cost, and (iii) infringement of data privacy. Therefore, an 

urgent need identified to leverage Mobile Edge Computing (MEC) in order to finetune 

and deploy LLMs on or in closer proximity to data sources, while also preserving data 

ownership for end users. In accordance with the vision of "NET4AI" (network for AI) in 

6G era [15], we envisioned a 6G-MEC architecture that can support LLM deployment at 

the network edge. Our proposed architecture includes the following critical modules. 

⚫ Goal Decomposition: The global inference task is performed collaboratively between 

different layers in the mobile network system. The fusion center decomposes the 

global goal into smaller sub-goals and assigns them to the next-layer BSs based on 

their respective strengths. The BSs then further decompose the sub-goals into 

smaller ones. This process continues until it reaches the edge devices, as in Fig. II-

12.4-1a. 

⚫ Cross-View Attention: The self-attention of transformers can only be computed for 

locally available sensory data. If multiple sensors acquire multi-view data that is 

relevant for a given inference task, it is necessary to compute how a token from a 

given piece of data collected at one sensor attends to another token from another 

piece of data collected or measured at another sensor. We call this as cross-view 
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attention, which is computed at a fusion center in the feature space after feature 

projection on a hyperplane, as in Fig. II-12.4-1b, II-12.4-1c, and II-12.4-1d. 

⚫ Latent Structure-based Knowledge Distillation: It is expected that 6G will evolve 

into with mobile network supporting in-network and distributed AI at the edge [15]. 

However, considering the excessive memory and compute requirements of LLMs, is 

it feasible to run such large models at the 6G edge? Also, would the network 

bandwidth support various agents/devices equipped with LLMs exchanging the 

entirety of their models for model aggregation and collaboration? A step in this 

direction has been studied in [16] recently, where devices use INL to only exchange 

the structure of their extracted features, not the features themselves. This structure 

is then utilized onsite at the device to fine-tune the locally extracted features. 

 

 

II-12.5.  Conclusion 

This paper explained our proposal and analysis on INF for the inference application 

for AI native 6G cellular network. The performance evaluations are also examined 

specifically on INL comparing that in HFL and HLS. It also explained LLM application 

in INL. The full set of original paper on this contribution can be seen in [17].  

 

Fig.II-12.4-1 Main components of LLM-INL 
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Abstract— Advances in wireless communications, such as the 5th-generation mobile 

communication system (5G), have enabled a wide variety of devices to be connected to 

wireless networks. In 6G, all physical entities will be connected to wireless networks and 

their physical space information, such as position and velocity, will be available for new 

mobile services.  NTT’s Innovative Optical and Wireless Network (IOWN) will accelerate 

to obtain the physical-space information from various sensors. Therefore, mobile traffic 

is growing rapidly toward 6G. The use of the millimeter-wave (mmWave) bands is 

promising to increase the capacity of mobile networks. However, the mmWave link 

quality (LQ) is strongly affected by surrounding objects. To stably use mmWave bands, 

an effective solution is to predict future LQ and adaptively control wireless 

communication. This paper introduces 5G throughput-prediction technology that is 

based on deep neural networks using physical-space information and an automated 5G 

measurement environment using humanoid robots for deep-learning evaluations. 

 

II-13.1.  Background and Overview 

Advanced wireless communication systems enable a wide variety of devices connect to 

wireless networks. The 5th-generation mobile communication system (5G) contributes 

to creating a wide range of innovative applications, such as virtual and augmented 

reality (VR/AR), as well as services in diverse industries that require high speed, low 

latency and high reliability [1]. In 6G, all elements including people, things, and systems, 

will be connected to wireless networks, and an advanced cyber-physical fusion system 

(CPS) is expected to feedback optimal results to the real world through artificial 

intelligence (AI) [2]. A CPS is a system concept in which AI creates a replica of the real 

world in cyberspace (digital twin) and emulates it beyond the constraints of the real 

world. This concept will provide various values and solutions to social problems. NTT’s 

Innovative Optical and Wireless Network (IOWN) [3] accelerates the CPS concept by 

collecting physical space information from all devices and generating big data; thus, 

mobile traffic is growing rapidly toward 6G. The compound annual growth rate of mobile 

data usage worldwide is reported to 60 % [4].  

In order to accommodate the explosion in mobile traffic, the use of higher frequencies 

such as millimeter-wave (mmWave) is key for future wireless communication systems 

[5]. However, the mmWave bands are characterized by strong direct wave radio 
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propagation, and the mmWave link quality (LQ) is strongly affected by surrounding 

objects. To ensure stable use of the mmWave bands, we introduce wireless LQ prediction 

technology that focuses on the relationship between physical-space information and 

wireless link information. NTT Network Innovation Laboratories are researching using 

physical-space information to promote the evolution to wireless communication systems 

toward IOWN/6G [6]. 

 

II-13.2.  System Model of Wireless LQ Prediction 

Recent study of wireless LQ prediction for mmWave bands showed that physical space 

information such as user equipment (UE) position, camera images and point cloud data, 

are strongly correlated with wireless LQ of mmWave. For example, the received signal-

strength-indicator (RSSI) prediction for 60 GHz using depth images from RGB-D cameras 

in an indoor environment where two pedestrians move between an access point and fixed 

UE has been investigated [7]. However, a more complicated and practical scene where 

both the UE and surrounding objects move has not been considered. Therefore, we 

developed the wireless LQ prediction system for the complicated scene [8]. 

Fig. II-13.2-1 illustrates a wireless LQ prediction system that predicts future wireless 

LQ using physical-space information. The system assumes an environment where 

pedestrians walk around in a wireless cover area of a base station. There are two types of 

pedestrians, one is a UE holder, and the other is a pedestrian for blocking.  The UE holder 

walks while accessing applications such as VR/AR through a base station. The pedestrian 

for blocking has no UE and just walks around the UE holder. The system uses 

cameras/sensors to gather physical space information, which are the position, direction, 

and velocity of all the objects such as the pedestrians. The system also gathers wireless 

LQ information such as data thruput from the UE.  The LQ prediction model is trained 

with the physical space information and the wireless LQ information by using machine 

learning algorithms.  

 

Fig. II-13.2-1. System model of wireless LQ prediction.  
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II-13.3.  Experimental Evaluation of the Wireless LQ Prediction System 

To evaluate the wireless LQ prediction system that we described in the previous 

section, we gathered training data in an indoor environment with 28 GHz 5GNR and 

experimentally evaluated a prediction accuracy of the LQ prediction model [8]. We 

implemented a deep neural network (DNN) for the LQ prediction model and used a 

communication throughput as the LQ. 

For the experimental evaluation, we considered a pedestrian scenario in which two 

people are walking around in an indoor room; one is the UE holder who has a UE which 

communicates via a 5G 28 GHz channel, and the other is the pedestrian for blocking. For 

this scenario, we built autonomous mobility humanoid robots to gather an enough amount 

of training data for the LQ prediction model. The humanoid Robots-A and -B were used 

as substitutions for the UE holder and the pedestrian for blocking,  respectively. Fig. II-

13.3-1 shows an indoor experiment map and the different routes of the two robots. The 

running routes of Robot-A with the UE and Robot-B were the red and green lines, 

respectively, in this figure. Each robot flipped at the ends of the line and continued going 

back and forth between the ends of the line. The maximum robot speed was 1.0 m/s. Robot-

B ran between Robot-A and the base station, resulting in a decrease in throughput due to 

blocking. Each robot consisted of a humanoid mannequin mounted on a mobility robot. 

Robot-A, which held the UE in a backpack is shown in Fig. II-13.3-2. Robot-B for blocking 

is shown in Fig. II-13.3-3. Robots-A and -B were 1.67 and 1.70 m tall, respectively. The 

antenna height of the base station is 2.65 m. These robots were controlled by a robot 

operating system (ROS) [9]. The robots’ position, velocity, and direction were obtained 

from the ROS as physical space information. The robots had light detection and ranging 

(LiDAR) censors which can collect point clouds of laser signal reflection points. The point 

clouds were used to calculate the location and direction of the robots.  
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Fig. II-13.3-1. The locations of UE and 5G base station are shown on a map of the 

indoor experimental environment. The running courses of Robot-A and -B are red and 

green lines, respectively. Each robot flips at the end of the line. 

 

 
Fig. II-13.3-2. Robot-A with UE 

communicates through the 5G base 

station. 

 
Fig. II-13.3-3. Robot-B for blocking runs 

between Robot-A and the 5G base station. 

 

We used the Iperf [10] software tool to measure the throughput of the UE. In this 

experiment, we focused on an uplink communication, so we made the UE transmit 

packets via the Iperf to the server which was set on the multi access edge computing 

(MEC). 

The throughput of the UE and the states of the Robots-A and -B were measured every 

100 ms. The resulting dataset contained 1,493,750 samples corresponding to about 41 
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hours spread over 11 days. These values were normalized to yield a distribution from 0 

to 1 or -1 to 1. We used 20 % sampling data as test data. The remaining 80 % was used 

as training data (90 %), and as a validation data (10 %). Since we focus on LQ prediction 

for detecting the performance drops due to shielding, the upper limit of the measured 

throughput was set to 200 Mbps. Therefore, our prediction scheme predicts the future 

throughput with ceiling of 200 Mbps. For the LQ prediction model, we used a DNN which 

has three hidden layers: one long short-term memory layer and two fully connected 

layers spaced with 10% dropout. The activation function for the hidden layers is the 

rectified linear unit. The DNN is trained to minimize the loss function of the mean 

squared error. The optimization algorithm is Adam with a learning rate of 0.0005. The 

output value of the DNN is one-second-ahead throughput. To evaluate the differences in 

prediction accuracy of the DNN due to the input features of training data, we prepared 

four input features: one is the past one-second throughput (ΦT), one is the past one-

second states of the Robot-A (ΦA), one is the past one-second states of the Robots-A and 

-B (ΦAB) and one is the past one-second throughput and states of the Robots-A and -B 

(ΦABT). 

Fig. II-13.3-4 shows time sequential plots of one-second-ahead throughput prediction 

values and measured throughput values. There were two main factors affecting 

throughput degradation in our scenario. The first was line-of-sight (LOS) blockage by 

Robot-B moving between Robot-A and the base station at around 26 and 58 seconds, as 

shown in Fig. II-13.3-4. The observed throughput dropped to about 100 Mbps due to the 

blocking effect of the robot body in our environment. This occurred at various locations 

along Robot-A’s route, and blocking time changed due to the speed and relative directions 

of Robots-A and B. The second factor was self-blocking by Robot-A, which made a 180 

Fig. II-13.3-4. Time sequential plots of measured and predicted 

throughput.  



 

 

 

 127 

degree turn at each endpoint goal at around 9 and 37 seconds, as shown in Fig. II-13.3-

4. The self-blocking by Robot-A had greater impact on throughput than the LOS blockage 

by Robot-B as the throughput rapidly dropped below 50 Mbps. This is because Robot-A 

as the obstacle (self-blocking) was closer to the UE than Robot-B, and the 180-degree 

turn took longer to complete than the blockage by Robot-B.  

Fig. II-13.3-5 shows the cumulative distribution function (CDF) of the absolute error 

between the predicted throughput values and measured throughput values. The 

effectiveness of physical-space information became more prominent as the CDF value 

fell. The 50th-percentile absolute error value improved by 57.5% using ΦABT, compared 

with using ΦT, which takes past throughput as the input feature. This result indicates 

the correlation between the physical-space information and throughput. Additionally, 

the 70th-percentile absolute error value was less than 20 Mbps for all input features, 

indicating that the absolute errors were concentrated within 20 Mbps and correlations 

were observed between all input features and throughput. Similarly, at the 50th-

percentile absolute error value, compared with ΦA and ΦAB, an improvement of 35% was 

attained by adding the state of Robot-B. This confirms the effectiveness of the states of 

surrounding objects, such as Robot-B, in throughput prediction. Fig. II-13.3-5 also shows 

that large prediction errors exceeding 50 Mbps occurred. This is because the current 

input features of past throughput and physical-space information cannot explain the 5G 

network-driven throughput changes such as link interruption and reconnection. For 

future work, we plan to consider such throughput changes by adding the 5G network 

information.   

 
Fig. II-13.3-5. CDF of the absolute error between the predicted 

throughput for each input feature and measured throughput. 
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II-13.4.  Conclusion 

This paper presented a throughput-prediction technology for 5G services over a 28-

GHz channel that uses physical-space information for a two-pedestrian scenario in which 

both a UE holder and a pedestrian move continuously. To evaluate our throughput-

prediction model and collect the learning data required for training the DNN, we 

developed an actual indoor experimental setup where 5G throughput and physical-space 

information are automatically measured using autonomous humanoid robots. The 

throughputs, including the sharp drops due to self-blocking by UE rotation and the 

blocking by an object moving in front of the UE, were captured. We showed that our 

model was effective in using surrounding object information as well as UE information 

for predicting 5G throughput one second ahead. Our model with physical-space 

information improved prediction accuracy by 57.5% at the 50th-percentile absolute error 

value compared with a prediction model that uses only the past throughput as the input 

feature. We will continue this research to develop core technologies toward 6G/IOWN.  

For the further details of this paper, please refer [11]. 
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Abstract— Recently, advancement of AI/ML has been remarkable, and many applied 

research studies are attracting attention now. This is also true in the field of radio 

propagation. This paper introduces its application to radio propagation prediction, which 

is currently under intensive study. 

 

II-14.1.  Introduction 

In recent years, artificial intelligence (AI) / machine learning (ML) has made 

remarkable progress, and many applied research studies have been reported. Here, they 

are mainly based on deep learning. The deep learning is one of the methods of ML for 

neural networks with many layers (or DNN: deep neural network). Deep learning has 

succeeded the dramatic performance improvement of image recognition, natural 

language processing etc., while utilizing of abundant computer resources and big data. 

The main reason for its success is that the deep learning can automatically extract 

features of contents. 

In mobile communications, accurate prediction of radio propagation characteristics is 

needed for optimum cell design, various prediction models have been proposed so far [1]. 

These are categorized into two types. One is physical-based model which is based on 

electromagnetic theory, and another is statistical (or data-driven) model which is based 

on measurement data. Here, ray tracing (RT) is one of the physical-based models and 

has become popular tool for radio propagation analysis in recent years. In RT, various 

propagation characteristics such as loss, time of arrival, angle of arrival and so on can 

be predicted by tracing rays between transmitter (Tx) to receiver (Rx) while taking 

interaction (reflection, diffraction, transmission) into account. However, increasing the 

number of interactions considered to improve the prediction accuracy increases the 

computation time. So, when the target characteristic is only propagation loss, the 

statistical model, e.g. Okumura-Hata model [2] is preferred.  

In statistical modeling, multi-regression analysis has been applied to model the data 

[3]. The multi-regression analysis is a very powerful tool, but it is needed to manually 

determine input parameters (especially environmental parameters related to building, 

street, etc.) and functional form beforehand. This is very difficult because there are a lot 

of candidates. So, the prediction models with neural network (NN) have been proposed 

in [4], [5]. By using these models, functional form is automatically generated, and it is 

reported that prediction accuracy for propagation loss is improved. However, the models 
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are based on conventional fully connected neural network (FNN), optimal input 

parameters must be investigated, manually.  

As mentioned above, the deep learning can automatically extract features of contents. 

Especially, deep convolutional neural network (DCNN) are very useful to extract 

features from image. This means that optimal parameters for propagation loss prediction 

can be automatically obtained from map data with information such as building spatial 

distribution. So, DCNN-based model has been proposed for propagation loss prediction 

[6] and is currently being vigorously studied [7]-[12]. This paper presents our latest 

results in [12]. 

 

II-14.2.  DCNN-based Radio Propagation Prediction Model 

II-14.2.1.  DCNN Configuration 

DCNN of our proposed model is constructed by two parts: feature extraction part and 

prediction part, as show in Fig. II-14.2.1-1.  

The feature extraction part is for extraction of features of contents as key parameters 

for propagation loss prediction, and it is constructed by DCNN which has 13 

convolutional layers: Conv_1 – Conv_13, and five max. pooling layers: Pool_1 – Pool_5. 

First, three maps (the size of each map: 256-by-256) are input. In Conv_1&2 layers, 

convolutional processing with 32 filters (the size of each filter: 3-by-3) is done and then 

the 32 maps (the size of each map: 256-by-256) are obtained. In next Pool_1 layer, max. 

pooling processing is done for 32 maps. Here, pooling size is 2-by-2, so the size of output 

map is reduced to 128-by-128. After the similar convolutional and pooling processing are 

repeated, 256 maps (the size of each map: 8-by-8) are output from Pool_5 layer. Here, 

the number of samples is 16384 (=8×8×256) and these are input to Dense_1 layer after 

conversion process to 1 D data in Flatten_1. The prediction part is constructed by FNN 

with two fully connected layers: Dense_1 and Dense_2. After the processing in 

Dense_1&2, propagation loss is predicted as output. Note that activation function is 

defined as: 𝑓(𝑥) = 𝑥  in Dense_2 layer; otherwise, Rectified Linear Unit function, i.e. 

𝑓(𝑥) = max(0, 𝑥). 

 

Fig. II-14.2.1-1 DCNN configuration 
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II-14.2.2.  Input Map Data 

In our model, the spatial information of rectangular area centered on mobile station 

(MS) position is input to DCNN as map data. The size of rectangular is 256 m -by- 256 

m, and the area is sampled with 1 m mesh, so, the sample size is 256-by-256. In addition, 

the rectangular is defined so that the base station (BS) always exist in a certain direction. 

Specifically, as shown in Fig. II-14.2.2-1, the rectangular region is defined so that BS is 

oriented positively on the xm axis in the local coordinates of the map with MS as the 

origin. By this definition, the spatial information about “BS direction” are indirectly 

considered for DCNN learning, even if the BS position are not directly input to the 

DCNN as parameter. 

 

Fig. II-14.2.2-1. Definition of rectangular region 

 

Input maps are three as follows. 

⚫ BS distance map: Map with distance from BS to each mesh as an element. 

⚫ MS distance map: Map with distance from MS to each mesh as an element. 

⚫ Building map: Map with building height information in each mesh. 

In the building map, the height is normalized by the height of Fresnel-zone center when 

assuming one time scattering. This advantage is that BS antenna height and MS 

antenna height are indirectly considered as input parameters. Figure II-14.2.2-2 shows 

the examples of input map data. 

 

     

(a) BS distance map         (b) MS distance map        (c) Building map 

Fig. II-14.2.2-1. Examples of input map data 
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II-14.3.  Performance of DCNN-based Model 

II-14.3.1.  Measurement Data 

Propagation loss data measured in Kokura area are used for performance evaluation. 

Here, the data can be obtained for free from AP propagation database [13]. Figure II-

14.3.1-1 and Table II-14.3.1-1 show the measurement area and conditions, respectively. 

 

 

Fig. II-14.3.1-1 Measurement area (Kyushu Kokura area, Japan): White lines 

represent measurement courses. 

 

Table II-14.3.1-1 Measurement conditions 

 

 

In this paper, the data of 5 courses (#6, #19, #24, #27, #32) are used for validation, the 

remaining data of 29 courses are for DCNN training. Here, data of course #5 is not used 

because sufficient input map data could be obtained. The total number of samples (or 

MS points) is 81 for validation and 713 for training. 

 

II-14.3.2.  Evaluation Results 

Figure II-14.3.2-1 shows the prediction results for validation data. Horizontal axis 

represents distance from BS and vertical axis represents propagation loss. We find that 

measurement and prediction are agree well. Here, RMS error is 3.23 dB. 
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Fig. II-14.3.2-1 Prediction results. 

 

The extracted features after training DCNN can be visualized by using Grad-CAM 

(Gradient-weighted Class Activation Mapping) [14], which one of XAI (Explainable AI) 

algorithms. Therefore, Grad-CAM were performed for three points as shown in Fig. II-

14.3.2-2. Figure II-14.3.2-3 shows the analysis results with Grad-CAM. In Fig. II-14.3.2-

3, the larger the gradient value, the higher the contribution for the propagation loss 

prediction. From the results, DCNN-based model is thought to use the "distribution of 

low-rise buildings and spaces without buildings" in the vicinity of MS as the basis for 

determining the propagation loss prediction. 

 

 

(a) Positional relationship with BS 

A             B             C 

   

(b) Maps in local coordinate system 

Fig. II-14.3.2-1 Reception points for evaluation of extracted features from map data. 
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(a) Point A          (b) Point B           (c) Point C  

Fig. II-14.3.2-2 Analysis results with Grad-CAM when using multiple maps. 

 

Finally, Fig. II-14.3.2-3 shows propagation loss distribution predicted by trained 

DCNN when BS are installed in different location. Note that the other propagation 

conditions are same as that in table II-14.3.1-1. From this figure, we can see that even if 

the distance from the BS is the same, the propagation loss increases in areas with dense 

buildings. 

 

 

Fig. II-14.3.2-3 Propagation loss distribution predicted by trained DCNN. 

 

II-14.4.  Conclusion 

In this paper, we introduced DCNN-based model for radio propagation loss prediction. 

This model predicts the propagation loss from map data with information such as 

building spatial distribution and its prediction accuracy is higher than conventional 

model based on multi-regression analysis. In our study, RMS error of about 3 dB is 

obtained. Also, we showed that the basis for determining the prediction in the DCNN-

based model can be confirmed by Grad-CAM. 

 

1.0

0.8

0.6

0.4

0.2

0.0

G
ra

d
ie

n
t



 

 

 

 136 

REFERENCE 

[1] T. K. Sarkar, Z. Ji, K. Kim, A. Medour, and M. Salazar-Palma, “A Survey of 

Various Propagation Models for Mobile Communication,” IEEE AP Magazine, Vol. 

45, No. 3, pp, 51-82, June 2003. 

[2] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” 

IEEE Trans. VT, vol. 29, no. 3, pp. 317-325, Aug. 1980. 

[3] K. Kitao, and S. Ichitsubo, “Path loss prediction formula in urban area for the 

fourth-generation mobile communication systems,” IEICE Trans. Commun., vol. 

E91-B, no. 6, pp. 1999-2009, June 2008. 

[4] E. Östlin, H. Zepernick, H. Suzuki, “Macrocell Path-Loss Prediction Using 

Artificial Neural Networks,” IEEE Trans. VT, vol. 59, no. 6, pp. 2735-2747, July 

2010. 

[5] M. Ayadi, A. Ben Zineb, and S. Tabbane, “A UHF Path Loss Model Using Learning 

Machine for Heterogeneous Networks,” IEEE Trans. AP, vol. 65, no. 7, pp. 3675-

3683, July 2017. 

[6] T. Imai, K. Kitao, and M. Inomata, "Radio Propagation Prediction Model Using 

Convolutional Neural Networks by Deep Learning," EuCAP2019, April 2019. 

[7] T. Hayashi, T. Nagao, and S. Ito, “A study on the variety and size of input data for 

radio propagation prediction using a deep neural network,” EuCAP2020, March 

2020. 

[8] N. Kuno, W. Yamada, M. Inomata, M. Sasaki, Y. Asai, and Y. Takatori, 

“Evaluation of Characteristics for NN and CNN in Path Loss Prediction,” 

ISAP2020, Jan. 2021. 

[9] X. Zhang, X. Shu, B. Zhang, J. Ren, L. Zhou, and X. Chen, "Cellular Network 

Radio Propagation Modeling with Deep Convolutional Neural Networks," in Proc. 

26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 2378-2386, Aug. 

2020. 

[10] T. Nagao, T. Hayashi, “A Study on Urban Structure Map Extraction for Radio 

Propagation Prediction using XGBoost,” EuCAP2021, March 2021. 

[11] K, Inoue, K. Ichige, T. Nagao, and T. Hayashi, “Learning-Based Prediction Method 

for Radio Wave Propagation Using Images of Building Maps,” IEEE AWPL, vol. 

21, no. 1, pp. 124-128, Jan. 2022. 

[12] K. Kozera, T. Imai, K. Kitao, and S. Suyama, “Performance Evaluation of DCNN-

Based Model for Radio Propagation Loss Prediction - Analysis on Prediction 

Mechanism with Grad-CAM -,” IEICE Trans. Commun., vol. J106-B, no.9, pp. 618-

627, Sep. 2023. 

[13] AP Propagation Database: Online data repository created and supported by 

Technical committee on Antennas and Propagation, IEICE. 

https://www.ieice.org/cs/ap/language/en/misc-eng/denpan-db/ 

https://www.ieice.org/cs/ap/language/en/misc-eng/denpan-db/


 

 

 

 137 

[14] R. R. Selvaraju, et al.,” Grad-CAM: Visual Explanations from Deep Networks via 

Gradient-based Localization,” International Journal of Computer Vision, Dec. 

2019. 

  



 

 

 

 138 

II-15.  AI-Based Radio Propagation Modeling for Wireless Emulator 

Tatsuya Nagao, Takahiro Hayashi 

KDDI Research, Inc. 

 

Abstract— To efficiently design and validate wireless communication systems, 

including Beyond 5G, research and development of wireless emulators that replicate the 

behavior of wireless communications in a virtual environment is progressing. Precise 

emulation requires accurate models of radio propagation characteristics in real 

environments. We introduce recent advancements in site-specific radio propagation 

modeling techniques utilizing machine learning. 

 

II-15.1.  Introduction 

In the design of wireless communication systems, the verification and performance 

evaluation of systems based on real-world use cases are critical processes. However, 

conducting field tests using actual wireless devices in real environments requires 

substantial resources and poses challenges in ensuring reproducibility. Consequently, 

research and development efforts are advancing toward wireless emulators replicating 

communication environments in a virtual space, thereby simulating the behavior of 

wireless communication systems [1]. These wireless emulators aim to construct a digital 

twin of wireless communication by enabling wireless communication systems, composed 

of virtual devices built in a virtual space and those connected via physical interfaces, to 

operate in real-time to simulate the system’s dynamic characteristics. 

When evaluating and validating wireless communication systems using wireless 

emulators, it is desirable that the radio propagation characteristics in the expected usage 

environment can also be reproduced in the virtual space. Traditional radio propagation 

models are typically constructed based on statistical processing of simple environmental 

parameters, such as the distance between Tx and Rx and measured data. However, as 

actual propagation characteristics can vary significantly due to surrounding 

environments, the accuracy of site-specific propagation characteristics proves 

insufficient for precise emulation of wireless communication.  

To address this, various methods utilizing machine learning to establish models that 

consider site-specific environmental information are being investigated. By implicitly 

learning the relationships between environmental data and measured data, models 

tailored to individual locations can be constructed. Additionally, the application of 

artificial intelligence (AI) techniques, such as image recognition, facilitates the 

extraction of features from multidimensional data like environmental spatial 

information, thereby enabling complex pattern recognition. 
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II-15.2.  Path Loss Model Based on Residual Networks (ResNet) 

This section describes the proposed method for modeling path loss [2]. As illustrated 

in Fig. II-15.2-1, the method utilizes three types of map data as input: (a) relative 

building height surrounding the Tx, (b) relative building height surrounding the Rx, and 

(c) the distance between the Tx and Rx. Here, relative building height refers to the height 

of a building relative to the height of the antenna, serving as an indicator of line-of-sight 

from the antenna. The extraction of map data is conducted to ensure that the directions 

from the Tx point to the Rx point, and vice versa, are aligned. 

Furthermore, as shown in Fig. II-15.2-2, we have designed an architecture suitable for 

path loss prediction based on Residual Networks (ResNet), which are widely used in 

image recognition tasks. ResNet incorporates shortcut connections between several 

convolutional layers, allowing for efficient propagation of error information from the 

output layer back to the higher layers—specifically, to those layers closer to the input—

during the training process. This structural characteristic enhances the model's ability 

to learn complex representations and improves the accuracy of path loss predictions in 

the presence of varying environmental factors.  

 

 
Fig. II-15.2-1. Examples of Input Data 

 

(a) Relative Height Map

around Tx

(b) Relative Height Map

around Rx

(c) 3D distance map

between Tx and Rx
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Fig. II-15.2-2. Path Loss Model Based on Residual Networks 

 

II-15.3.  Evaluation Results 

The accuracy of path loss prediction using the proposed method was evaluated based 

on measured data obtained from an urban area in Yokohama City. A Tx was set up on 

the rooftop of a building approximately thirty-one meters high, where measurements 

were conducted across four frequency bands: 922 MHz, 2462 MHz, 4850 MHz, and 28.35 

GHz [3]. K-folding Cross-validation (K=5) was employed for the assessment of the 

proposed method. Specifically, 80% of the dataset was used for training, while the 

remaining 20% was reserved for evaluation, with this process repeated five times. A 

comparative evaluation was also conducted against the widely recognized statistical 

model, the 3GPP TR 38.901 Urban Macro (UMa) model [4]. The evaluation results are 

presented in Table.  and Fig.. As seen from the table, the proposed method significantly 

improves prediction accuracy compared to the UMa model. Furthermore, the predicted 

values from the proposed method closely correspond to the measured values, as 

illustrated in the figures. 

 

Table. II-15.3-1. Evaluation Results 

Frequency RMSE [dB] 

3GPP Urban 

Macro (UMa) 

ResNet 

(proposed) 

922 MHz 8.8 3.8 

2462 MHz 7.4 4.3 

4850 MHz 8.2 2.7 

28.35 GHz 17.6 3.5 
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(a) 922 MHz (b) 2462 MHz 

  
(c) 4850 MHz (d) 28.35 GHz 

Fig. II-15.3-1. Scatter Plot 

(x: Measured Path Loss, y: Predicted Path Loss) 

 

II-15.4.  Conclusion 

This paper introduces methodologies for applying AI technologies to radio propagation 

modeling, a critical component for realizing wireless emulators as digital twins of 

wireless communication systems. By utilizing site-specific environmental information 

through machine learning, we have demonstrated the ability to simulate site-specific 

radio propagation characteristics accurately. The findings of this study are expected to 

contribute to the efficient design and optimization of future wireless communication 

systems, representing a significant step forward in the evolution of wireless 

communication technology. 
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II-16.  6G Simulator Utilizing Future Prediction Control Technology Based on AI/ML 

Yuyuan Chang, Yuta Hayashi, Kiichi Tateishi, Satoshi Suyama, and Huiling Jiang 

 NTT DOCOMO, INC. 

 

II-16.1.  Introduction 

In 6G, to achieve communication speeds exceeding 100 Gbps, the utilization of 

frequency bands called sub-terahertz bands, such as 100 GHz, which can use greater 

bandwidths, is being considered compared to 5G [1]. Additionally, discussions are 

beginning on the use of frequency bands known as mid-bands, ranging from 7 GHz to 24 

GHz. Similar to 5G, it is anticipated that communication systems will be constructed by 

combining two types of frequency bands. To realize ultra-low latency communication, 

high connectivity, and coverage assurance, a distributed network enhancement 

technology (NRNT: New Radio Network Topology) is being proposed [2], which will 

establish a distributed network topology in the spatial domain. For example, new 

network forms such as reconfigurable intelligent surfaces (RIS) that can control 

reflection directions and intensities, and moving base stations (BS) like base station 

drones are being envisioned. 

 In addition to the advancement of conventional wireless communication technologies, 

the utilization of AI (Artificial Intelligence) is also being considered. In the 6G era, it is 

anticipated that vast and diverse information such as images, audio, and video will be 

transmitted from various devices, and AI technology is expected to be used to analyze 

and leverage this extensive and varied information. Furthermore, the introduction of AI 

technology into wireless communication systems is being contemplated, with the 

expectation that it will provide higher quality communication by implementing various 

controls in wireless communication, managing networks and devices, and automating 

optimization functions for use cases and environments. Particularly in the fusion of 

cyber-physical spaces, video and various sensing information will be transmitted to the 

network through IoT (Internet of Things) devices. Based on the transmitted information, 

calculations can be performed in cyber space to predict a few seconds ahead, and the 

predicted information can be utilized in the physical space for precise communication, 

such as base station selection and beam selection. 

 The authors have developed a 6G system-level simulator (6G simulator) designed to 

evaluate and visualize the technologies being considered for 6G as a whole system [3]-

[5]. Figure II-16.1-1 illustrates the worldview of the 6G simulator. So far, the sub-

terahertz band, mid-band, and NRNT have been integrated into the 6G simulator, and 

evaluations have been conducted in a virtual outdoor urban environment. Additionally, 

machine learning (ML) algorithms from AI technology have been incorporated into the 

6G simulator, enabling predictive control to avoid the impact of unexpected obstacles 
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based on pre-learned results, demonstrating the use cases of AI technology in wireless 

communication systems [6]. This work investigates the effects of using AI-ML under 

various conditions on system performance, thereby clarifying the effectiveness of 

wireless communication systems utilizing AI technology. Simulations will also be 

conducted under various conditions, such as changes in the TRP (Transmission and 

Reception Point) selection cycle and the mobility speed of user equipment (UE), to 

confirm how the effects of AI-ML manifest and to consider effective use cases for AI-ML 

[6], [7].  

 

II-16.2.  Future Prediction Control Using AI-ML Technology 

In 5G and 6G, high-frequency bands are used, which have strong directivity and high 

propagation loss, however, enabling high-speed, large-capacity communication and low-

latency communication. Therefore, it is important to create environments that are as 

close and unobstructed as possible, and the use of RIS and BS drones to intentionally 

establish communication pathways is being considered. However, since the 

communication environment is constantly changing, there is a high possibility of 

throughput degradation due to the emergence of unexpected obstacles. Hence, it is 

conceivable to use future prediction control technology to avoid the impact of obstructions 

and prevent throughput degradation. 

With the extreme-high-speed, extreme-large-capacity, and extreme-low latency 

communication features of 6G, the realization of autonomous driving for vehicles 

utilizing cellular networks is anticipated in the 6G era. In this work, we consider a 

situation where an autonomous vehicle, as shown in Figure II-16.2-1, is driving in an 

outdoor urban area, and the communication between the autonomous vehicle and the 

TRP located along the road involves the occurrence of obstructions. At that time, future 

Figure II-16.1-1   The worldview of the 6G simulator.  
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prediction control using AI-ML will be implemented to prevent throughput degradation 

and ensure that a high throughput is consistently maintained. 

The real communication environment is constantly changing, influenced by various 

factors such as time of day, weather, population density in the area, and the presence or 

absence of obstructions. Therefore, in this simulation, deep reinforcement learning is 

employed for TRP selection. Deep reinforcement learning is a technology that combines 

deep learning and reinforcement learning, enhancing decision-making capabilities in 

more complex environments by integrating the two approaches.   

To implement deep reinforcement learning, it is necessary to define the environment, 

state, action, and reward. In this simulation, the environment is defined as 

“communication between the TRP on a straight road and the autonomous vehicle,” and 

the state is defined as “the UE’s location information and the presence of a bus that acts 

as an obstruction.” The UE’s location information is represented by dividing the AI-ML 

application area into a grid pattern, as shown in Figure II-16.2-1, using the grid numbers. 

Additionally, the length of one side of the grid is defined as “GridSpace.” The action is 

defined as “the TRP selection process,” and the reward is defined as “the cumulative 

value of received power within the TRP selection cycle.” Furthermore, the ε-greedy policy 

is employed as the action policy. The ε-greedy policy allows for a balanced combination 

of “exploration,” where actions are selected randomly by varying ε, and “exploitation,” 

where actions are chosen based on rewards obtained from previous explorations, 

resulting in an action policy that is more suitable for the environment [7].  

 
Figure II-16.2-1   The environment 

(The image of the grid is shown by red lines) 

 

 
Figure II-16.2-2    An example of updating the neural network. 

(Updating by every 4 slots) 
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For constructing the neural network, Adam (Adaptive Moment Estimation) [8] is used. 

The results obtained from the ε-greedy policy are utilized to update the neural network. 

The update timing is aligned with the TRP selection cycle. Figure II-16.2-2 illustrates 

an example of updating the neural network. For example, let’s assume the TRP selection 

cycle occurs every 4 slots. If the current time is slot 8, the UE’s location and the presence 

of a bus at slot 4, as well as which TRP was selected, will be learned based on the received 

power obtained from the connected TRP up to slot 8. By performing this process for each 

TRP selection cycle, it becomes possible to select the TRP that yields the highest received 

power within the selection cycle, taking into account the presence or absence of 

obstructions.  

 

II-16.3.  Simulation Using a 6G Simulator 

Table II-16.3-1 shows the learning parameters for AI-ML, and Table II-16.3-2 presents 

the simulation parameters. The flow of the simulation begins with the generation of the 

learning model. During this process, the parameter values indicated in Table II-16.3-1 

are used for training. Subsequently, the generated learning model is employed for 

predictive control. In this simulation, the frequency range of 15 GHz in the mid-band is 

utilized. Each TRP consists of nine antennas, while the UE is configured with nine 4×4 

subarrays. Each UE forms beams through hybrid beamforming. The UE selects the TRP 

and beams that provides the highest received power and connects to the TRP with that 

Table II-16.3-1   AI-ML learning parameters 

 
 

Table II-16.3-2   simulation parameters  
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beam. Furthermore, the number of TRPs installed is set to nine, and one UE is chosen 

for evaluation. In this simulation, data is transmitted using time division duplex (TDD) 

with a downlink to uplink ratio of 10:0. Therefore, this paper focuses on evaluating the 

downlink throughput. The blockage caused by a bus utilizes a model based on TR38.901’s 

Blockage model B [9]. This model arranges flat obstructions and applies attenuation 

based on the difference between the straight-line distance between the transmission and 

reception points and the distance via the top, bottom, left, and right edges of the 

obstruction. In this paper, the movement speed of UE is categorized into three types: 30 

km/h, 60 km/h, and 120 km/h. In the 6G simulator, at 30 km/h, this corresponds to 

moving 1 meter per slot; at 60 km/h, it corresponds to 2 meters, and at 120 km/h, it 

corresponds to 4 meters. 

 

II-16.3.1.  Effects of AI-ML under Different TRP Selection Cycles 

Figures II-16.3.1-1 to II-16.3.1-3 show the variation in throughput when the mobile 

station (MS) moves at a speed of 60 km/h, with a GridSpace of 20 m, and TRP selection 

cycles of 10, 20, and 40 ms. The shaded areas in the figures indicate the timing of bus 

stops.   

 
Figure II-16.3.1-1   variation in throughput 

(selection cycle: 10 ms) 

 Figure II-16.3.1-2   variation in throughput 

(selection cycle: 20 ms) 
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The solid lines represent the characteristics when AI-ML is applied, while the dashed 

lines indicate the characteristics without the application of AI-ML. Focusing on the 

shaded areas, it can be seen that in all patterns, the use of AI-ML helps prevent a decline 

in throughput. Moreover, as the TRP cycle increases, the throughput tends to improve 

regardless of the presence or absence of obstructions, and the effect of AI-ML becomes 

more pronounced. When the TRP selection cycle is long, the connection remains with a 

single TRP, allowing for the selection of one with high received power during the 

connection moment. However, considering the overall received power, it is more likely to 

be lower. Conversely, by using AI-ML, it becomes possible to select a TRP that will 

increase the received power from the current selection to the next, which suggests, as 

shown in Figures II-16.3.1-2 and II-16.3.1-3, that the effects of AI-ML manifest strongly 

even when obstructions do not appear. When the TRP selection cycle is short, the 

throughput characteristics do not change regardless of the application of AI-ML when 

there are no obstructions. This is because, with a short TRP selection cycle, it is possible 

to continuously select TRPs with high received power, resulting in good throughput 

characteristics without the need to consider maximizing received power within the 

selection cycle. However, considering real-world communication systems, processing 

delays may occur, making rapid selection difficult. Therefore, it is expected that in 

realistic environments, the characteristics will resemble those with a longer TRP 

selection cycle as shown in Figures II-16.3.1-2 and II-16.3.1-3, making the introduction 

of AI-ML effective. It should be noted that there are moments when throughput 

significantly deteriorates regardless of whether AI-ML is applied; this is due to 

processing in the simulator. As a result, similar downturns will occur in subsequent 

results. 

 

 Figure II-16.3.1-3   variation in throughput 

(selection cycle: 40 ms) 
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II-16.3.2.  Effects of AI-ML at Different UE Speeds 

Figures II-16.3.2-1 and II-16.3.2-2 show the results when the GridSpace is set to 20 m, 

the TRP selection cycle is 10 ms, and the speed of UE varies between 30 km/h and 120 

km/h. The differing number of shaded areas in the figures (indicating the occurrence of 

obstructions) corresponds to the change in the speed of the bus that cause the 

obstructions, which is adjusted according to the UE’s speed, resulting in variations in 

the number of times the bus travels along the measured road during the simulation time. 

Upon examining the throughput characteristics, when the UE’s speed is 30 km/h, the 

use of AI-ML allows for the avoidance of obstruction effects, leading to improvements in 

throughput. In contrast, at 120 km/h, the effect of AI-ML is minimal. The throughput 

characteristics without the application of AI-ML do not deteriorate even when 

obstructions occur, suggesting that in this simulation, the configurations for the TRP 

selection cycle and TRP placement ensure that TRPs on the obstruction side are not 

selected even without AI-ML. Consequently, since the selected TRP remains unchanged 

with the application of AI-ML, there is no change in the throughput characteristics at 

the moments when obstructions occur. Figure II-16.3.2-2 presents the throughput 

  
Figure II-16.3.2-1   variation in throughput 

(speed: 30 km/h) 

 

  
Figure II-16.3.2-2   variation in throughput 

(speed: 120 km/h) 
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characteristics when the UE's speed is 120 km/h and the TRP selection cycle is set to 20 

ms. The lengthened TRP selection cycle resulted in significant differences in 

characteristics depending on the application of AI-ML compared to the results shown in 

Figure II-16.3.2-2. By observing the occurrence of obstructions, it can be seen that the 

change in the TRP selection cycle has made the system susceptible to obstruction effects 

even at 120 km/h. Additionally, the use of AI-ML effectively mitigates the throughput 

degradation caused by these obstructions. As mentioned in the previous section, when 

the TRP selection cycle increases, even if the received power is high at the moment of 

selection, the overall received power within the cycle is likely to be low. Moreover, with 

higher speeds, the UE travels longer distance before the next TRP selection, significantly 

increasing the distance between the TRP and the UE. Thus, by selecting TRPs to 

maximize received power within the cycle via AI-ML, differences in throughput are 

observed depending on whether AI-ML is applied, as illustrated in Figure II-16.3.2-3.  

 

II-16.4.  Conclusions 

In the simulations, AI-ML was implemented for communication between a single 

autonomous vehicle and a TRP installed along a straight road in an outdoor urban 

environment. By maximizing the received power within the selection cycle, it is possible 

to prevent throughput degradation caused by obstruction effects; thus, using AI-ML for 

predictive control in communications between vehicles and TRPs can be considered 

effective. Additionally, even when there are no obstructions, the impact of maximizing 

received power within the selection cycle is evident, and throughput significantly 

improved in environments where UE cannot consecutively select TRPs. This indicates 

that AI-ML can serve as a means to mitigate throughput degradation caused by 

processing delays or other system performance issues encountered during connections 

with TRPs. However, it should be noted that this simulation considers only one UE, and 

does not account for interference from other UEs. Furthermore, since the road is straight 

 
 Figure II-16.3.2-3   variation in throughput 

(speed: 120 km/h, selection cycle: 20 ms) 
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and the UE's movement path follows a single pattern, the environment is relatively easy 

to learn. When evaluating under real-world conditions, it is necessary to consider 

scenarios with an increased number of UEs or irregular movement of UEs. As a future 

prospect, we are considering the exploration of additional use cases for AI technology by 

examining new scenarios and adding learning parameters.  
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II-17.1.  Introduction 

In the Cyber-Physical Systems (CPS) anticipated for the 2030s, artificial intelligence 

(AI) will recreate the real world in cyberspace through digital twins, allowing predictions 

of the future and new knowledge gained through emulation to be fed back into the real 

world, thereby providing various values and solutions. In this advanced CPS, to achieve 

high-capacity and low-latency transmission of sensing information from the real world 

to cyberspace, as well as reliable and low-latency control signal transmission from 

cyberspace to the real world, research and development of the 6G is being vigorously 

pursued [1]-[4]. In 6G, the peak data rate is set to exceed 100 Gbps, the area coverage 

rate providing Gbps-level services is 100%, the end-to-end (E2E) latency is less than 1 

ms, the connection for an ultra-high number of devices is targeted at 10 million 

devices/km², and extremely stringent conditions such as ultra-low power consumption 

and low cost are established. Furthermore, 6G is expected to utilize AI technologies in 

every domain of the system, while wireless sensing technologies that leverage 

communication signal for sensing applications will enable high-precision terminal 

positioning with errors of less than a centimeter and surrounding object detection. For 

maximizing the performance of this 6G system, ensuring quality, and efficient system 

operations, dynamic control through CPS is expected to be introduced [5], [6]. 

Figure II-17.1-1 shows a 6G system utilizing dynamic control through CPS [6]. Here, 

the focus is primarily on the wireless portion of the 6G system. In the real space, there 

exists the actual 6G system, within which numerous wireless devices (base stations, 

relays, terminals, etc.) are connected to the wireless network. On the other hand, the 

virtual space contains propagation emulators, transmission emulators, and dynamic 

control. In the operational flow, first, at a certain point in time, a large volume of sensing 

information from the actual 6G system is sent in real-time to the virtual space. Based on 

this information, models of the usage environment and the wireless devices are 

constructed in the virtual space. Next, the propagation characteristics of each wireless 

link are estimated in succession through the propagation emulator and the transmission 

 
Figure II-17.1-1    a 6G system utilizing dynamic control through CPS. 



 

 

 

 153 

emulator, and the performance (throughput, interference level, power consumption, etc.) 

of each wireless device is evaluated based on the propagation characteristics. 

Furthermore, dynamic control optimizes the target performance in the virtual space. 

Using AI, it extracts information about the adjustment parameters and feeds this back 

to the propagation emulator and the transmission emulator. By repeatedly cycling 

through the propagation emulator, transmission emulator, and dynamic control, 

optimization can be achieved in the virtual space. Finally, as control signals necessary 

for the control of the actual 6G system, these are fed back to the real space and reflected 

in the actual 6G system. By enabling real-time cycles of high-capacity information 

exchange between the real space and the virtual space, it is believed that the maximum 

performance and efficient operation of the 6G system can be realized [7]. 

 On the other hand, when utilizing high-frequency bands such as the sub-terahertz 

band in the system, it is necessary to not only validate individual technologies but also 

to conduct an early assessment of system performance when deploying multiple base 

stations (BS) and mobile stations (MS). This will clarify the performance improvement 

effects of the system as a whole and identify potential issues. However, device 

development generally requires significant time and cost, and it is necessary to ensure 

flexibility in changing configurations and parameters. Therefore, the authors aimed to 

demonstrate the feasibility of achieving ultra-high-speed communication through the 

utilization of the sub-terahertz band by developing a 6G system-level simulator 

(hereinafter referred to as the 6G simulator) and advancing its performance verification 

[8]. 

 The conventional 6G simulator has the capability to evaluate the throughput when 

utilizing the 100 GHz band in two types of indoor environments, simulated as a shopping 

mall and a factory, confirming that throughput exceeding 100 Gbps can be achieved in 

both scenarios. When considering the introduction of 5G and 6G communication systems 

in specific environments such as indoors or factories, it is essential to understand the 

system performance, such as throughput, in advance for the intended environment. 

Moreover, visualizing the system performance provides very beneficial information for 

exploring methods of implementing communication systems. However, the conventional 

6G simulator could only evaluate throughput in the pre-prepared scenarios and 

environments mentioned above. To accurately calculate throughput, high-precision 

estimation of radio wave propagation characteristics in the intended communication 

system environment is necessary. Recently, ray tracing calculations using polygon 

models of structures generated from point cloud data acquired in assessment 

environments have gained attention as methods to estimate propagation characteristics 

with high precision [9]-[12]. Therefore, the authors developed an enhanced 6G simulator 

capable of evaluating and visualizing the throughput of 5G and 6G based on the 

propagation characteristics obtained from ray tracing calculations using real 
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environment models derived from point cloud data for the purpose of evaluating system 

performance in real environments [13]. This paper introduces an overview of the 

functions of this simulator and examples of its performance evaluation [14], [15]. 

 

II-17.2.  Overview of a 6G Simulator Using Real Environment Models Based on Point 

Cloud Data 

This simulator is based on the 6G simulator reported in [8]. Below, we describe the 

overview of the conventional 6G simulator and this simulator. The conventional 6G 

simulator was developed to quantitatively validate the requirements and technical 

concepts of 6G as described in the NTT Docomo 6G white paper [1], as well as to verify 

the potential of utilizing the sub-terahertz band as a system [8]. In this simulator, we 

also aimed to apply the sub-terahertz band to achieve extreme-high data rate 

communication exceeding 100 Gbps more reliably, under the constraint of maintaining 

BS antenna sizes comparable to those of sub-6 and millimeter waves, and transmission 

power equivalent to that of 5G. By utilizing the sub-terahertz band, it is possible to 

significantly increase the number of antenna elements (hereinafter referred to as 

“elements”) in Massive MIMO antennas, which in turn provides high beamforming (BF) 

gain that can compensate for the considerable propagation losses associated with the 

sub-terahertz band. 

In the conventional 6G simulator, a channel model standardized by 3GPP was used 

for the simulation of the channel between the BS and MS at the system level [16]. In 

contrast, this simulator utilizes the propagation characteristic information obtained 

from ray tracing calculations applied to indoor real environment models generated from 

point cloud data. Specifically, it uses information on propagation loss, angles of arrival 

of waves, and propagation delay computed by ray tracing.  

  
Figure II-17.2-1: An example of the evaluation environment in this simulator using 

point cloud data 

MS

BS
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Figure II-17.2-1 shows an example of the evaluation environment in this simulator. 

This simulator is capable of displaying an evaluation environment image using point 

cloud data obtained from any environment, and the figure is generated using point cloud 

data collected from a conference room. By utilizing image data acquired simultaneously 

with the point cloud data from a camera, the actual conference room is reproduced in 

color. In the simulator, both the base stations (BS) and mobile stations (MS) can be 

positioned at arbitrary locations, and here, the evaluation environment is shown with 2 

BSs and 6 MSs. When placing multiple BSs, by inputting the ray tracing calculation 

results for the placement of MS holistically within the evaluation area for each BS into 

the tool, it is possible to evaluate the throughput of the MS at any arbitrary location. 

However, the system does not accommodate MS movement. 

Additionally, this simulator can visually capture the relationship between propagation 

characteristics and throughput characteristics by displaying a color map of the 

propagation parameters. The calculation parameters for the ray tracing are shown in 

Table II-17.2-1. In the ray tracing calculations, polygon data generated from point cloud 

data obtained in the conference room shown in Figure II-17.2-1 was input into Wireless 

Insight, a commercial ray tracing tool. The center frequencies were set to 4.7 GHz, 28 

GHz, and 100 GHz, assuming configurations for 5G and 6G. The antennas for both the 

BS and MS are omnidirectional antennas, with the BS antenna height set at 2.0 m and 

the MS antenna height set at 1.5 m, and the ray search condition was set to 7 reflections. 

The material of the walls was calculated as concrete. 

 

II-17.3.  Evaluation Results of a 6G Simulator in a Conference Room Generated from 

Point Cloud Data 

Examples of propagation characteristics calculated through ray tracing are shown in 

Figures II-17.3-1 to II-17.3-3. These figures represent color maps of the received level, 

delay spread, and angle spread in the horizontal plane on the MS side at 100 GHz. It can 

Table II-17.2-1   parameters for the ray tracing 

  
 



 

 

 

 156 

be observed that the received level is high near the BS, and due to reflections, the angle 

spread becomes larger near the walls of the conference room.  

Next, based on the propagation parameters calculated from the above ray tracing, we 

describe the throughput characteristics computed by this simulator. The parameters for 

the system-level simulation using this simulator are shown in Table II-17.3-1. Fading 

channels are generated from the propagation loss, propagation delay, and angles of 

arrival calculated for each ray in the ray tracing, and the throughput is calculated when 

beamforming (BF) and MIMO spatial multiplexing are performed using Massive MIMO.  
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Figure II-17.3-1   the color map of 

received level 

 

 
 Figure II-17.3-4   the user throughput 

(4.7 GHz) 

 

 
 Figure II-17.3-2   the color map of delay 

spread 

 

 
 Figure II-17.3-5   the user throughput (28 

GHz) 

 

 
 Figure II-17.3-3   the color map of angle 

spread 

 
 Figure II-17.3-6   the user throughput 

(100 GHz) 

MS #0 581.5Mbps

MS #1 510.3Mbps

MS #3 633.3Mbps

MS #4 738.8Mbps

MS #2 535.8Mbps

MS #5 721.3Mbps

BS #0

BS #1

MS #0 1.6Gbps

MS #4 2.5Gbps

MS #2 1.2Gbps

MS #5 1.5Gbps

BS #0

BS #1

MS #0 21.1Gbps

MS #1 21.1Gbps

MS #3 84.5Gbps

MS #4 71.8Gbps

MS #2 10.6Gbps

MS #5 12.4Gbps

BS #0

BS #1
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Figures II-17.3-4 to II-17.3-6 show the downlink (DL) user throughput at 4.7 GHz, 28 

GHz, and 100 GHz when two BSs and six users are placed. The figures display the user 

throughput for MS#0 to MS#5, indicated by red circles. It can be observed that MS#3 

and MS#4, which are located in areas with high received levels and large angle spreads 

as shown in Figure II-17.3-1, achieve relatively high throughput. The average 

throughput of the six MSs at 4.7, 28, and 100 GHz is approximately 0.62, 1.9, and 37 

Gbps, respectively. This confirms that utilizing higher frequency bands improves 

throughput due to the effects of increased bandwidth.  

 Furthermore, Figure II-17.3-7 shows the throughput map for the case of 100 GHz. 

Here, the BS is positioned as BS#0 in Figure II-17.3-6, and the throughput is displayed 

in a color map when only the position of one MS is changed. As in the previously 

mentioned cases, it can be seen that a throughput of 100 Gbps is achieved in areas with 

high received levels.  

Table II-17.3-1   the parameters of system-level simulations 

  
 

 
 

 Figure II-17.3-7   the color map of user throughput (100 GHz) 
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II-17.4.  Conclusions 

 In this paper, we discussed the development of a simulator that can evaluate system 

performance in any environment using real environment models based on point cloud 

data as an enhancement of the 6G simulator. In the future, we plan to conduct 

performance evaluation and high-precision improvements of the simulator by comparing 

throughput measured using experimental equipment in real environments with the 

calculation results from this simulator. Additionally, towards the future development of 

tools that can dynamically control and optimize 6G using CPS, we will advance technical 

studies for high precision and fast processing in propagation simulations using real 

environment models, as well as link-level and system-level transmission simulations. 
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Abstract— In this paper, we discuss that a Digital-Twin can be both digital 

representation of real-world, i.e. Digital-Twin by Beyond 5G, which could be enabled by 

advanced Beyond 5G capabilities, and digital representation of network objects, i.e. 

Digital-Twin for Beyond 5G, which helps to enable advanced Beyond 5G capabilities. 

Federating and jointly optimizing various Digital-Twin instances of both real-world and 

network objects is essential to realize new services in the era of Beyond 5G, and thus 

propose a Digital-Twin architecture which manages various Digital-Twin instances in a 

common way so that any Digital-Twin applications can easily utilize them. We then 

introduce probabilistic Digital-Twin, which can improve both efficiency and safety of 

many Digital-Twin use cases by considering uncertainties inherent in the real world, 

and cross-domain orchestration of Digital-Twins, which will be a key to realize the 

digital-first services. Finally, we introduce some of examples of the Digital-Twins 

discussed in this paper, including radio communication environment, human-robot 

cooperation, and smart sustainable mobility. 

 

II-18.1.  Introduction 

Digital-Twin is a digital reproduction of objects in physical space (cars, jet engines, 

people, buildings, cityscapes, etc.), or potentially in virtual space or so called Metaverse. 

It is expected to be an important technology for various ICT systems in factories, aviation, 

connected cars, smart cities, smart buildings, etc., in realizing advanced Cyber Physical 

Systems (CPSs). The concept of Digital-Twin has been introduced in various literature 

since the 2000s, and widely accepted in recent years when several literatures, such as 

[1], has been known. Also, several articles, such as [2], provides an extensive survey on 

Digital-Twins, including enabling technologies and technical issues. 

As an extension of classical notion of Digital-Twin, which is a one-to-one 

correspondence between objects in physical space and objects reproduced in virtual space, 

Digital Twin Network [3] has been proposed to represent of networks of multiple objects 

so that various objects in real and virtual space share information and cooperate to 

perform specific tasks in connected cars, smart cities, etc. In addition, Cognitive Digital 

Twin [4] focuses on knowledge representation, called ontology, to handle various types 

of objects in the real world. This is expected to enable more sophisticated applications by 

sharing digital twins between different systems. 
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Digital-twin, sometimes called Network Digital-Twin, is also used to plan, design, 

manage, simulate, operate, and control networks, as discussed by ITU-T [5], IOWN 

Global Forum Digital [6], and TMforum [7]. In this case, the Digital-Twin is a digital 

reproduction of any network devices, edge/cloud computing resources, terminal devices 

or robots which has network interfaces, radio communication environments measured or 

estimated by various sensing devices, or even logical networks and services. 

 

II-18.2.  Digital-Twin Platform Architecture with Beyond 5G 

The key concept of the proposed Digital-Twin platform architecture is: 

1) Digital-Twin instances of both real-world and network objects can be handled freely 

without any distinctions, and 

2) Various Digital-Twin instances can be easily federated and jointly optimized, 

so that any Digital-Twin applications can easily utilize them to realize new services in 

the era of Beyond 5G. 

Figure II-18.2-1 shows the proposed framework. As above discussed, target physical 

objects include any real-world and network objects. Other logical objects such as logical 

networks could also be included. Any measurement data are collected from them to 

reconstruct them in the Digital-Twin space, using any sensing/control devices like 

cameras, radio monitors, ISAC (Integrated Sensing and Communications), and legacy 

network managers such as syslog or EMS. Raw data analysis, such as object detection 

from video images, could be done here to extract meaningful information from the raw 

data. Then, common Digital-Twin functions would be provided by the platform so that 

Digital-Twin applications can utilize the Digital-Twin instances through common and 

open APIs. The functions include 1) device connectivity function to connect any kinds of 

sensing/control devices through common interfaces like WoT or MQTT, 2) device 

abstraction function to easily utilize various versions of devices in a common way, 3) data 

management functions to manage the data of any Digital-Twin instances, 4) various 

analysis functions, such as probabilistic inference discussed below, commonly useful for 

many Digital-Twin applications, and 5) Data isolation and access control function so that 

different applications can share the data and federate each other. Those functions may 

use common open source platforms like Eclipse Ditto [8]. 

Figure II-18.2-2 shows the implementation of Digital-Twin in distributed infrastructure. 

As its nature, physical devices, sensing/control functions, as well as raw data analysis 

are implemented on local devices or edge computing devices. Digital-Twin functions are 

applications are implemented on distributed computing and storage infrastructure and 

mutually interconnected via high-speed and low-latency communication infrastructure. 

We also note that all those functions shown in Figure II-18.2-1 and Figure II-18.2-2 are 
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enabled on an advanced Beyond 5G communication, computation, and storage 

infrastructure. 

 

Figure II-18.2-1 Digital-Twin Platform Architecture 

 

Figure II-18.2-2 Digital-Twin Implementation in Distributed Infrastructure 

 

II-18.3.  Functional Design 

II-18.3.1.  Probabilistic Representation of Digital-Twin 

Safety and trustability are critical for many Digital-Twin applications in many real-

world use cases and thus “Probabilistic Digital-Twin”,  in which risk management can 

be better handled through probabilistic representation of the real-world, and 

probabilistic prediction and probabilistic control based on the probabilistic 

representation, has been proposed [9]. Use cases of the probabilistic Digital-Twin 

includes following examples. 

• Human Robot Collaboration, autonomous robot, automatic driving (Figure II-

18.3.1-1 left): Risk sensitive path/speed/behavior control with probabilistic 

information for Improved/optimized/controlled safety. 
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• Remote-controlled robot (Figure II-18.3.1-1 center): Move slowly in unstable 

radio condition, avoid unstable signal area for Robust operation, avoid risks, etc. 

• Network design and control (Figure II-18.3.1-1 right): BS (Base Station) location 

design and beam forming control based on probabilistic radio environment map 

for cost effective, robust, application aware network design and control.  

 

Figure II-18.3.1-1 Digital-Twin Implementation in Distributed Infrastructure 

 

Figure II-18.3.1-2 shows an example of a data structure for probabilistic Digital-Twin. 

In between Digital-Twin applications and devices, a space-time structure is composed of 

many objects in the 4D space. These objects may be a physical object in the space (orange 

dot) or a status of a lattice point in the 4D space (green dot). Properties of these objects, 

such as occupancy status of the lattice point, location of the objects, identity/class of the 

objects are expressed as a probability distribution, rather than a specific value. 

 

Figure II-18.3.1-2 Data Structure for Probabilistic Digital-Twin 

 

II-18.3.2.  Cross-Domain Orchestration of Digital-Twins 

Today, many smart cities are introducing digital twins, using IoT sensors to collect 

and monitor urban data. Conventionally, they have put much effort to digitize physical 

space on cyber space in order to analyze and simulate the real world through data for 

situation monitoring and decision making. From now, we will focus on feedback to the 

real space to implement the results of analysis and simulation, which is called “digital-

first” paradigm [10]. The digital twin collaboration will be the key to realize the digital-

first services. 
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The beyond 5G/6G functional architecture[14] is an open platform to receive a diverse 

set of functions. One of the key components is the orchestrator, which is responsible for 

finding the right combination of system components and linking them together to meet 

the requirements from a CPS service. The orchestrator facilitates the coordination of 

digital twins across industries to realize a myriad of new value-added services.  

To facilitate information sharing and interaction between digital twins among 

different domains, orchestrators are required to have the functions shown in Figure II-

18.3.2-1. The federation function configures and manages federations of digital twins 

that update a shared virtual model while maintaining privacy data generated by 

physical objects within individual digital twins. The translation function facilitates the 

formal and semantic transformation of communications between digital twins in 

different domains. The brokering function identifies and authenticates digital twins, 

relays data transmission and reception, performs data filtering, real-time delivery, and 

guarantees delivery. The synchronization function synchronizes many-to-many 

interactions between physical space entities and cyberspace models between digital 

twins. The registry function registers and discovers digital twin components based on 

their feature information. International standardization of these functions is also 

underway [18]. 

 

Figure II-18.3.2-1 Functional Architecture of the Digital Twin Orchestrator 
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II-18.4.  Use Case Examples 

II-18.4.1.  Digital-Twin for Radio Communication Environment 

This use case is to manage the radio communication network via Digital-Twin. 

Stability of radio communication is crucial for mission critical communications such as 

remote robot operations or connected car operations. However, radio communication is 

heavily affected by radio environments, so it is very important to understand the radio 

environment in detail as a Digital-Twin to manage radio communications. 

As discussed in Section 3.1, it is quite difficult to monitor, estimate, and predict the 

radio environment, especially when high frequency radio like mm-Wave is used for 

mobile communications. For example, Reference Signal Received Power (RSRP) varies 

greatly depending on the position and angle of the terminal, as shown in Figure II-18.4.1-

1, thus it should be quite useful to construct the Digital-Twin of radio environment using 

probability distributions, as shown in Figure II-18.4.1-2. To construct probabilistic 

representation of radio environment as a Digital-Twin, various statistical methods have 

been proposed, such as a method using Markov Random Field (MRF) [15] and Gaussian 

Process Regression (GPR) [16]. 

 

 

Figure II-18.4.1-1 Changes in RSRP (28 GHz Local 5G environment (Band n257), one 

rotation of the terminal in 50 seconds) 

 

 

Figure II-18.4.1-2 Estimated Radio Environment Map and its Probability Distribution 



 

 

 

 167 

 

Probabilistic Digital-Twin of radio environment can be used for radio network design 

in which estimated RSRP value should be larger than required value plus certain margin 

at each location. We proposed to set the margin based on the inferred probability 

distribution, rather than to set a uniform margin. As shown in Figure II-18.4.1-3, when 

the target coverage rate, i.e. the ratio of points that the observed RSRP value is within 

the margin, is set to 90%, the proposed method can achieve this by using a 1.1σ interval 

as the margin at each point, whereas the conventional method requires a uniform 1.9σ 

interval average as the margin. The probabilistic Digital-Twin can also be used for 

dynamic beam forming. As shown in Figure II-18.4.1-4, RSRP map would be estimated 

after beam change to see if the change is effective for the robot locations in the field, or 

the map would be estimated before beam change to select the best beam to satisfy the 

communication requirements of the robots in the field.  

 

 

Figure II-18.4.1-3 Probabilistic Digital-Twin for radio network design (ratio of points 

that the observed value is within the margin) 

 

 

Figure II-18.4.1-4 Probabilistic Digital-Twin for dynamic beam forming (estimated 

RSRP map and robot locations) 
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II-18.4.2.  Digital-Twin for Human-Robot Cooperation 

Robots are widely utilized in industrial sites due to the decrease in the number of 

workers. However, there are many sites where it is difficult to replace all operations with 

robots due to cost and environmental adaptability, and robots and workers need to 

coexist. A logistics facility is a such site. 

Logistics facilities have become larger and larger in recent years, and robots (AGVs 

and AMRs) are increasingly used to transfer goods inside them. On the other hand, there 

are many tasks that are difficult for robots to handle goods directly, for example picking 

and repacking goods, so manual labor is also indispensable. Therefore, workers and 

transfer robots coexist. Although there are some sites that separate the space for both 

workers and robots, it is desirable for both to be able to coexist safely in the same space 

to increase the efficiency of space utilization in the facility. In such cases, the trade-off 

between safety and efficiency becomes an issue. A typical transfer robot restrains its 

speed so that it can stop when an obstacle including workers approaches, and once it 

recognizes the obstacle, it stops. While this ensures safety, it inevitably reduces transfer 

efficiency. This trade-off can be resolved by utilizing probabilistic Digital Twin to predict 

the future location of the worker and control robots to consider the risk of collision and 

speed reduction. Each of the location prediction and control techniques is introduced in 

detail below. 

However, sensors inevitably have blind spots, and there is a delay between detection 

of location of an obstacle and robot control, so obstacle location information at the time 

when the robot is operating is needed. To solve this problem, the presence or absence of 

obstacles at each time and point in the robot operation area is expressed as a probability, 

and based on the observed information, the condition of the blind spots and the future 

condition at each point are estimated as probabilities (See Figure II-18.4.2-1). When 

estimating the probability, it is important to understand the relationship of obstacles in 

space and time. In other words, for moving obstacles, if the obstacle is within a certain 

distance in the direction of movement from the point where it was observed at the 

previous time, the probability of its presence is high, but if it is further away than a 

certain distance, the probability of its presence is low. We represent such a spatial-

temporal relationship between the presence and absence of obstacles as a conditional 

random field, CRF, and by mapping the observed values, we construct a model that 

predicts the future situation of obstacles from the current obstacle situation based on the 

observed values[11]. 
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a: Probability of obstacle existence at each point 

(yellow is high, red is middle, blue is low) 

 
b: Prediction of worker’s future 

location 

Figure II-18.4.2-1 Prediction of future location of obstacle 

 

After the location of future obstacles is estimated, it is necessary to control the route 

and speed of the transfer robot to travel safely and efficiently considering real-world 

uncertainties. Risk-sensitive stochastic control [12][13] solves these problems. In risk-

sensitive stochastic control, the robot's motion equation is defined as a stochastic 

differential equation (see Figure II-18.4.2-2-a) because it represents the uncertainties 

that affect the robot's motion, such as hardware degradation and ground conditions, as 

a model. An evaluation function is used to choose optimal control inputs, and we design 

it to evaluate both safety and efficiency, as well as to be sensitive to risk (see Figure II-

18.4.2-2-b). Although the value of the evaluation function will be a probability 

distribution because stochastic differential equation is used as equation of motion, it is 

possible to select the control that reduces both the value that the smaller is better and 

the variance as the optimal one. To determine the actual control inputs, various control 

inputs are prepared in advance, and the path and speed determined by solving stochastic 

differential equations are evaluated with the risk-sensitive evaluation function to select 

the optimal control (See Figure II-18.4.2-2-c). 

a: Stochastic differential equation 

 
c: Safe and efficient path 

b: Risk-sensitive evaluation function 

Figure II-18.4.2-2 Risk-sensitive stochastic control 

 

II-18.4.3.  Smart Sustainable Mobility 

Today, the environment and mobility are major issues for many smart cities. Here we 

assume the following digital twin; the smart environment digital twin monitors air 

pollution by collecting air quality data from observation stations, while restricting 

emissions at major sources when air pollution is expected to worsen; the smart driving 

digital twin monitors the driving environment of individual cars using in-vehicle sensors, 
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while guiding driving maneuvers and travel routes according to changes of the 

environment. The eco-driving assistance, an application of digital twin orchestration 

owned by a city officer, aims to improve the city’s environmental quality by 

recommending environment-friendly driving maneuvers to drivers and autonomous cars 

in areas with poor environmental quality. Based on the emission restriction plan 

simulated by the smart environment digital twin, the smart driving digital twin 

instructs the navigation system to perform driving maneuvers to control emissions. 

Furthermore, it enhances the air pollution prediction of the smart environment digital 

twin using environmental sensor data captured by the cars, which enables more effective 

eco-driving assistance.  

Figure II-18.4.3-1 show interactions between these digital twins through the 

orchestrator functions. The federation function shares the air pollution prediction model 

of the smart environment digital twin with the smart driving digital twin for federated 

learning using private data collected by individual car. The brokering function allows 

application to receive the emission restriction plan generated by the smart 

environmental digital twin, determines the restriction order for cars driving in the 

restricted area, and can send the order to the smart driving digital twins of the target 

cars. The translation function converts the environmental sensor data collected by the 

smart driving digital twin of individual cars to the format of observation data in the 

smart environment digital twin to import the “mobile” observation data for denser 

prediction of air pollution. 

Implementation of the orchestrator framework is promoted for individual digital twin 

platforms as a common interface of inter-platform digital twin orchestration. The first 

implementation of the orchestrator framework and the use case is being conducted on 

NICT xData Platform [17] and Testbed. The framework implementation for IOWN is 

also being discussed in IOWN Global Forum based on mapping the orchestrator 

functions to the IOWN Data Space for Digital Twin Applications architecture [19]. In 

addition, integrated architecture of the orchestrator between physical space and cyber 

space is included in our future work. 
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Figure II-18.4.3-1: Smart sustainable mobility use case 

 

II-18.5.  Conclusion 

In this paper, we argued that a Digital-Twin can be digital representation of both real-

world network objects. Based on this, we proposed a Digital-Twin architecture which 

manages various Digital-Twin instances in a common way so that any Digital-Twin 

applications can easily utilize them. We then introduced probabilistic Digital-Twin and 

cross-domain orchestration of Digital-Twins, as well as the use cases including radio 

communication environment, human-robot cooperation, and smart sustainable mobility. 
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Abstract— The vision for 6G networks is to offer pervasive intelligence and internet of 

intelligence, in which the networks natively support artificial intelligence (AI), empower 

smart applications and scenarios in various fields, and create a "ubiquitous-intelligence" 

world. In this vision, the traditional session-oriented architecture cannot achieve flexible 

per-user customization, ultimate performance, security and reliability required by future 

AI services. In addition, users' requirements for personalized AI services may become a 

key feature in the near future. By integrating AI in the network, the network AI has 

more advantages than cloud/MEC AI, such as better QoS assurance, lower latency, less 

transmission and computing overhead, and stronger security and privacy. Therefore, 

this paper proposes the task-oriented native-AI network architecture (TONA), to 

natively support the network AI. By introducing task control and quality of AI services 

(QoAIS) assurance mechanisms at the control layer of 6G [1]. 

 

II-19.1.  Introduction 

This paper explains the needs of Native-AI based 6G Wireless Network Architecture 

and lists of reason that require to shift to task-oriented system mechanism. The proposed 

NW architecture called Task-Oriented native-AI network architecture (TONA), to 

natively support the network AI that creates a "ubiquitous-intelligence" world. 

Reflecting the proceeding transformation, this paper further proposes TONA to meet 

personalized AI service demand and requirements. This paper mainly:  

(1)  Introduces three-layer logical architecture of task management and control system, 

and designs the task lifecycle management procedures, which include the 

collaboration of multi-dimension heterogeneous resources (communication, 

computing, data, and algorithm) and multi-node at the control layer.  

(2) Defines task-specific Quality of AI Services (QoAIS) indicators for the mapping from 

Service Level Agreement (SLA) indicators — e.g., service requirement zone (SRZ) 

and user satisfaction ratio (USR) — to QoAIS indicators, and discusses task-level 

QoS assurance to meet individual requirements of different users.  

(3) Compares the network AI and cloud/mobile edge computing (MEC) in terms of QoAIS 

indicators. Thanks to providing the AI executing environments closer to UE, TONA 

is anticipated to have some advantages, such as better data privacy protection, lower 

latency, and lower energy consumption. 
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II-19.2.  Network Paradigm  Change 

The TONA, as shown in Figure II-19.2-1, introduces the orchestration and control 

functions as well as the resource layer in network AI. The control function uses control 

layer signaling to control multi-nodes (UEs, base stations, and CN NEs) and 

heterogeneous resources in real-time. We believe that the 6G network architecture 

requires the following changes in the design paradigm: 

(1) Change 1: The object to be managed and controlled in network are changed from 

sessions to tasks. 

(2) Change 2: The resources of the object are changed from one dimension to multi-

dimensions, from homogeneous to heterogeneous. 

(3) Change 3: The object control mechanism are changed from session-control to task-

control. 

(4) Change 4: The performance indicators of the object are changed from session-QoS to 

task-QoS. 

Fig. II-19.2-1 Network paradigm changes 

 

II-19.2.1.  Change 1: From Session to Taks 

AI tasks differ from traditional sessions in terms of technical objectives and methods.  

In terms of technical purposes, a traditional communications system provides session 

services, typically between terminals or between terminals and application servers, to 

transmit user data (including voice). Conversely, network AI (i.e., NE intelligence and 

network intelligence) aims to provide intelligent services for networks and improve 

communication network efficiency. Service intelligence seeks to provide app-specific 

intelligent services for third parties. Thus, sessions and AI tasks have different purposes. 
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II-19.2.2.  Change 2: From Single-dimension to Multi-dimension Heterogenous 

Resources 

The traditional wireless system establishes tunnels and allocates radio resources for 

data transmission. Conversely, TONA implements collaboration among heterogeneous 

resources of connection, computing, data and model/algorithm to execute AI tasks. Take 

an AI inference task as an example. 

 

II-19.2.3.  Change 3: From Session-control to Task-control 

Unlike session control, task management and control in network AI includes the 

following functions: (1) Decomposing and mapping from external services to internal 

tasks, (2) Decomposing and mapping from service QoS to task QoS, and (3) Providing 

heterogeneous and multi-node collaboration mechanisms to orchestrate and control 

heterogeneous resources of multiple nodes at the infrastructure layer in real-time (to 

implement distributed serial or parallel processing of tasks and real-time QoS 

assurance). 

 

II-19.3.  Architecture and Key Technologies 

This section describes the logical architecture and deployment options of TONA, and 

QoAIS details. 

II-19.3.1.  Logical Architecture of TONA 

First, we introduce fundamental basic concepts in wireless network. A 

communications system consists of a management domain and a control domain. The 

Operations Administration and Maintenance (OAM) deployed in management domain is 

used to operate and manage NEs through non-real-time (usually within minutes) 

management plane signaling. The control domain is deployed on core network (CN) NEs, 

base stations, and terminals, and features with real-time controlling signaling (usually 

within milliseconds). For example, an E2E tunnel for a voice call can be established 

within dozens of milliseconds by control signaling. 

Unlike the centralized, homogeneous, and stable AI environment provided by the cloud, 

the network AI faces the following technical challenges when embedded in the wireless 

networks: (1) AI needs to be distributed on numerous CN NEs, base stations, and UEs. 

Therefore, it is necessary to consider how to manage the massive number of nodes 

efficiently in the architecture design. (2) The computing, memory, data, and algorithm 

capabilities of different nodes vary significantly, requiring the architecture design to also 

consider how to efficiently manage these heterogeneous nodes efficiently. (3) The 

dynamic variation of the channel status and the computing load need to be factored into 

the architecture design. To address the aforementioned challenges, TONA includes two 

logical functions, as shown in Figure II-19.3.1-1: (1) AI orchestration and management, 
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called Network AI Management & Orchestration (NAMO); and (2) task control. NAMO 

decomposes and maps AI services to tasks and orchestrates the AI service flows. It is not 

performed in real-time and is generally deployed in the management domain. Task 

control introduces the Task Anchor (TA), Task Scheduler (TS), and Task Executor (TE) 

functions in the control domain in three layers. This layered design strikes a balance 

between the task scope and real-time task scheduling, and effectively manages the 

numerous, heterogeneous nodes and aware of dynamic change of heterogeneous 

resources (e.g. channel status and computing load). 

 

Fig. II-19.3.1-1 Logical architecture of TONA 

 

II-19.3.2.  Deployment Architectures 

The statuses of TEs (e.g., the CPU load, memory, electricity, and UE channel status) 

change in real-time. As such, deploying TA and TS close to each other can reduce the 

management delay. According to the design logic of wireless networks, the CN and RAN 

need to be decoupled as much as possible. For example, the CN should be independent 

of RAN Radio Resource Management (RRM) and Radio Transmission Technology (RTT) 

algorithms. Therefore, this paper recommends that TA/TS be deployed on RAN and CN, 

named RAN TA/TS and CN TA/TS, respectively. This way will allow TA to manage TEs 

in real-time flexibly. Four deployment scenarios of TONA are shown in Figure II-19.3.2-

1 to describe the necessity and rationality of CN TA and RAN TA. These scenarios are 

only examples — there may be other deployment scenarios and architectures. 
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Scenario 1: gNodeB + UEs. In this scenario, the gNodeB serves as both TA and TS, and 

the UEs serve as TEs. Here, a UE is a computing provider and task executor, which 

accepts task assignment and scheduling from the gNodeB. The Uu interface and Radio 

Resource Control (RRC) layer between the gNodeB and the UE can be enhanced to 

support task controlling and scheduling purposes.  

Scenario 2: CU + DUs. In this scenario, the CU serves as both TA and TS, and the DUs 

serve as TEs. Here, a DU is the computing provider and task executor. The F1 interface 

and F1-AP layer between the CU and the DU can be enhanced to support task controlling 

and scheduling purposes. 

Fig. II-19.3.2-1 Four deployment scenarios of TONA 

 

II-19.4.  Advantage Analysis 

Compared with cloud/MEC AI, the TONA and QoAIS have the following advantages 

(summarized in Table 2) in meeting users' customized AI service requirements: 

(1) QoAIS assurance 

Dynamic wireless environments require joint optimization of the heterogeneous 

resources (connection and three AI resources) to achieve precise QoAIS assurance. 

(2) Latency  

TONA computing is distributed on NEs closer to UEs or even directly on UEs to process 

data locally. This not only successfully achieves real-time and low-latency AI services, 

but also significantly reduces data transmission. In the cloud/MEC AI mode, a large 

amount of data needs to be transmitted to the cloud/MEC for training, meaning that E2E 

data transmission takes longer to complete. 
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(3) Overhead  

TONA can optimally allocate resources through the real-time collaboration mechanism 

of the heterogeneous resources, maximizing the overall resource utilization and reducing 

the transmission and computing overheads. Conversely, because the cloud/MEC AI 

cannot adapt to dynamic environments, it allocates resources based on only the 

maximum resource consumption to ensure QoAIS. As a result, the overall resource 

utilization is low, and the resource overhead is high. 

(4) Security 

TONA has native data security and privacy protection capabilities because it processes 

data inside the network. Unlike TONA, the cloud/MEC AI protects data privacy only at 

the application layer. 

 

II-19.5.  Conclusion 

To meet the 6G vision of pervasive intelligence and internet of intelligence, TONA is 

proposed to support efficient collaboration of heterogeneous resources and multi-node in 

wireless networks, and to provide new services in the form of tasks at the network layer. 

By bringing new dimensions of resources to 6G networks (i.e., computing, data, and 

model/algorithm), this architecture enables the SLA assurance of computing related 

services such as AI services, further explores the application scenarios of 6G networks, 

and enriches the value of wireless networks. Furthermore, the task concept and TONA 

proposed in this paper support not only AI tasks, but also sensing-, computing- and data 

processing-specific tasks. 
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Abbreviation List 

Abbreviation Explanation 

3GPP 3rd Generation Partnership Project 

5G 5th Generation mobile communication systems 

6G 6th Generation mobile communication systems 

AA Actor Allocator 

Adam Adaptive Moment Estimation 

AGV Automatic Guided Vehicle 

AI Artificial Intellegence 

AI-AI Ai-native Air Interface 

AM Amplitude Modulation 

AMR Autonomous Mobile Robot 

AP Access Point 

API Application Programming Interface 

AR Augmented Reality 

BER Bit Error Rate 

BF Beamforming 

BLER Block Error Rate 

BM Beam Management 

bMRO beam-based Mobility Robustness Optimization 

BS Base Station 

BSS Business Support System 

CDF Cumulative Distribution Function 

CF-mMIMO Cell-free massive MIMO 

CIR Channel Impulse Response 

CLC Closed-Loop Control 

CMOS Complementary Metal-Oxide-Semiconductor 

CN Core Network 

CNN Convolutional Neural Network 

CPS Cyber-Physical System 

CPU Central Processing Unit 

CSI Channel State Information 
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Abbreviation Explanation 

CSI-RS Channel State Information Reference Signal 

CU Central Unit 

DC Direct Current 

DCNN Deep Convolutional Neural Network 

DDQN Double Deep Q Network 

D-DRL Distributed DRL 

DL Downlink 

DM-RS Demodulation Reference Signal 

DNN Deep Neural Network 

DPD Digital Predistortion 

DRL Deep Reinforcement Learning 

DSP Digital Signal Processing 

DT Digital Twin 

DU Distributed Unit 

eBPF extended Berkley Packet Filter 

eMBB enhanced Mobile Broadband 

EMS Electronics Manufacturing Service 

ES Energy Saving 

EVM Error Vector Magnitude 

FC Fully Connected 

FDE Frequency Domain Equalization 

FFT Fast Fourier Transformation 

FL Federated Learning 

FNN Fully connected Neural Network 

FPGA Field Programmable Gate Array 

GA Genetic Algorithm 

gNB gNodeB 

GNN Graph Neural Network 

GoB Grid of Beams 

GPR Gaussian Process Regression 

GPU Graphics Processing Unit 
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Abbreviation Explanation 

Grand-CAN Gradient-weighted Class Activation Mapping 

HDD Hard Disk Drive 

HLF Horizontal Federated Learning 

HSL Horizontal Split Learning 

IBO Input Back Off 

IFFT Inverse FFT 

IMT International Mobile Telecommunication 

INL In-Network Learning 

IoT Internet of Things 

IOWN Innovative Optical and Wireless Network 

ISAC Integrated Sensing And Communications 

ITU-R 
International Telecommunication Union-

Radiocommunication Sector 

KPI Key Performance Indicator 

LAN Local Area Network 

LCM Life Cycle Management 

LiDAR Light Detection And Ranging 

LLM Large Language Model 

LLR Log-Likelihood Ratio 

LMF Location Management Function 

LOS Line-Of-Sight 

LQ Link Quality 

MCS Modulation and Coding Scheme 

MDP Markov Decision Process 

MDT Minimization of Drive Tests 

MEC Mobile Edge Computing 

MEC Multi access Edge Computing 

MIMO Multiple input Multiple Output 

ML Machine Learning 

MLP Multi-Layer Perceptron 

mMIMO massive MIMO 

mmWave millimeter Wave 
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Abbreviation Explanation 

MP Memory Polynomial 

M-plane Management plane 

MPLS-TE Multiprotocol Label Switching - Traffic Engineering 

MQTT Message Queuing Telemetry Transport 

MRF Markov Random Field 

MS Mobile Station 

MU-MIMO Multi-User MIMO 

MVP-C Minimum Viable Plan Committee 

NAMO Network AI Management and Orchestration 

NE Network Element 

Near-RT RIC Near-Real-Time RIC 

NLOS Non-Line-Of-Sight 

NN Neural Network 

Non-RT RIC Non-Real-Time RIC 

NR New Radio 

NRNT New Radio Network Topology 

NSSMF Network Slice Subnet Management Function 

NW Network 

OAM Operations, Administration, Maintenance 

O-CU-CP O-RAN Central Unit - Control Plane 

O-CU-UP O-RAN Central Unit - User Plane 

O-DU O-RAN Distributed Unit 

OFDM Orthogonal Frequency Division Multiplexing 

OLPC Outer-Loop Power Control 

O-RAN Open Radio Access Network 

O-RU Open RAN Radio Unit 

OSS Operation Support System 

OTT Over-The-Top 

PA Power Amplifier 

PF Proportional Fairness 

PGW Packet data network Gateway 
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Abbreviation Explanation 

PL Path Loss 

PM Performance Metric 

PoC Proof-of-Concept 

PS Parameter Server 

Q1 the first Quarter 

QAM Quadrature Amplitude Modulation 

QoAIS Quality of AI Services 

QoE Quality of Experience 

QoS Quality of Service 

QPSK Quadrature Phase Shift Keying 

R&D Research and Development 

RAN Radio Access Network 

rApp RAN intelligent controller Application 

RAT Radio Access Technology 

ResNet Residual Network 

RF Radio Frequency 

RF Random Forest 

RIC RAN Intelligent Controller 

RIS Reconfigurable Intelligent Surface 

RL Reinforcement Learning 

RMS Root Mean Square 

RMSE Root Mean Square Error 

ROS Robot Operating System 

RRM Radio Resource Management 

RS Relay Station 

RSRP Reference Signal Received Power 

RSSI Received Signal Strength Indicator 

RT Ray Tracing 

RTT Radio Transmission Technology 

RVTDNN Real-Valued Time-Delay Neural Network 

Rx Receiver 
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Abbreviation Explanation 

SA Static Approach 

SB Subband 

SC Single Carrier 

SCS Subcarrier Spacing 

SGCS Squared Generalized Cosine Simularity 

SINR Signal-to-Interference plus Noise Ratio 

SL Split Learning 

SLA Service Level Agreement 

SMO Service Management and Orchestration 

SNR Signal-to-Noise Ratio 

S-NSSAI Single-Network Slice Selection Assistance Information 

SON Self Organizing Network 

SOTA State-Of-The-Art 

SRZ Service Requirement Zone 

SSB Synchronization Signal Block 

STA Station 

SVM Support Vector Machine 

TA Task Anchor 

TAT Turn Around Time 

TBD To Be Determined 

TDD Time Division Duplex 

TDL Tapped Delay Line 

TE Task Executor 

TR Technical Report 

TRP Transmission and Reception Point 

TS Task Scheduler 

Tx Transmitter 

UCTG Use Case Task Group 

UE User Equipment 

UL Uplink 

UMa Urban Macro 
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Abbreviation Explanation 

UPF User Plane Function 

UPT User Perceived Throughput 

USR User Satisfaction Ratio 

vCPU Virtualized CPU 

VFL Vertical Federated Learning 

VNF Virtualized Network Function 

VR Virtual Reality 

vRAN virtual RAN 

VSL Vertical Split Learning 

WB Wideband 

WG Working Group 

WLAN Wireless Local Area Network 

WoT Web of Things 

WP Working Party 

XAI Explainable AI 

xAPP eXtended Application 

XGMF XG Mobile Promotion Forum 

 


